|
import os |
|
from json import dumps |
|
from typing import Dict, List, Union |
|
|
|
import numpy as np |
|
import pandas as pd |
|
from fastapi import FastAPI |
|
from gamma.utils import association |
|
from kafka import KafkaProducer |
|
from pydantic import BaseModel |
|
from pyproj import Proj |
|
|
|
|
|
use_kafka = False |
|
|
|
try: |
|
print("Connecting to k8s kafka") |
|
BROKER_URL = "quakeflow-kafka-headless:9092" |
|
|
|
producer = KafkaProducer( |
|
bootstrap_servers=[BROKER_URL], |
|
key_serializer=lambda x: dumps(x).encode("utf-8"), |
|
value_serializer=lambda x: dumps(x).encode("utf-8"), |
|
) |
|
use_kafka = True |
|
print("k8s kafka connection success!") |
|
except BaseException: |
|
print("k8s Kafka connection error") |
|
try: |
|
print("Connecting to local kafka") |
|
producer = KafkaProducer( |
|
bootstrap_servers=["localhost:9092"], |
|
key_serializer=lambda x: dumps(x).encode("utf-8"), |
|
value_serializer=lambda x: dumps(x).encode("utf-8"), |
|
) |
|
use_kafka = True |
|
print("local kafka connection success!") |
|
except BaseException: |
|
print("local Kafka connection error") |
|
print(f"Kafka status: {use_kafka}") |
|
|
|
app = FastAPI() |
|
|
|
PROJECT_ROOT = os.path.realpath(os.path.join(os.path.dirname(__file__), "..")) |
|
STATION_CSV = os.path.join(PROJECT_ROOT, "tests/stations_hawaii.csv") |
|
|
|
|
|
|
|
def default_config(config): |
|
if "degree2km" not in config: |
|
config["degree2km"] = 111.195 |
|
if "use_amplitude" not in config: |
|
config["use_amplitude"] = True |
|
if "use_dbscan" not in config: |
|
config["use_dbscan"] = True |
|
if "dbscan_eps" not in config: |
|
config["dbscan_eps"] = 30.0 |
|
if "dbscan_min_samples" not in config: |
|
config["dbscan_min_samples"] = 3 |
|
if "method" not in config: |
|
config["method"] = "BGMM" |
|
if "oversample_factor" not in config: |
|
config["oversample_factor"] = 5 |
|
if "min_picks_per_eq" not in config: |
|
config["min_picks_per_eq"] = 10 |
|
if "max_sigma11" not in config: |
|
config["max_sigma11"] = 2.0 |
|
if "max_sigma22" not in config: |
|
config["max_sigma22"] = 1.0 |
|
if "max_sigma12" not in config: |
|
config["max_sigma12"] = 1.0 |
|
if "dims" not in config: |
|
config["dims"] = ["x(km)", "y(km)", "z(km)"] |
|
return config |
|
|
|
|
|
|
|
config = {"xlim_degree": [-156.32, -154.32], "ylim_degree": [18.39, 20.39], "z(km)": [0, 41]} |
|
|
|
|
|
config = default_config(config) |
|
config["center"] = [np.mean(config["xlim_degree"]), np.mean(config["ylim_degree"])] |
|
config["x(km)"] = (np.array(config["xlim_degree"]) - config["center"][0]) * config["degree2km"] |
|
config["y(km)"] = (np.array(config["ylim_degree"]) - config["center"][1]) * config["degree2km"] |
|
config["bfgs_bounds"] = [list(config[x]) for x in config["dims"]] + [[None, None]] |
|
|
|
for k, v in config.items(): |
|
print(f"{k}: {v}") |
|
|
|
|
|
stations = pd.read_csv(STATION_CSV, delimiter="\t") |
|
stations = stations.rename(columns={"station": "id"}) |
|
stations["x(km)"] = stations["longitude"].apply(lambda x: (x - config["center"][0]) * config["degree2km"]) |
|
stations["y(km)"] = stations["latitude"].apply(lambda x: (x - config["center"][1]) * config["degree2km"]) |
|
stations["z(km)"] = stations["elevation(m)"].apply(lambda x: -x / 1e3) |
|
|
|
print(stations) |
|
|
|
|
|
class Data(BaseModel): |
|
picks: List[Dict[str, Union[float, str]]] |
|
stations: List[Dict[str, Union[float, str]]] |
|
config: Dict[str, Union[List[float], List[int], List[str], float, int, str]] |
|
|
|
|
|
class Pick(BaseModel): |
|
picks: List[Dict[str, Union[float, str]]] |
|
|
|
|
|
def run_gamma(picks, config, stations): |
|
|
|
proj = Proj(f"+proj=sterea +lon_0={config['center'][0]} +lat_0={config['center'][1]} +units=km") |
|
|
|
stations[["x(km)", "y(km)"]] = stations.apply( |
|
lambda x: pd.Series(proj(longitude=x.longitude, latitude=x.latitude)), axis=1 |
|
) |
|
stations["z(km)"] = stations["elevation(m)"].apply(lambda x: -x / 1e3) |
|
|
|
catalogs, assignments = association(picks, stations, config, 0, config["method"]) |
|
|
|
catalogs = pd.DataFrame( |
|
catalogs, |
|
columns=["time"] |
|
+ config["dims"] |
|
+ ["magnitude", "sigma_time", "sigma_amp", "cov_time_amp", "event_index", "gamma_score"], |
|
) |
|
catalogs[["longitude", "latitude"]] = catalogs.apply( |
|
lambda x: pd.Series(proj(longitude=x["x(km)"], latitude=x["y(km)"], inverse=True)), axis=1 |
|
) |
|
catalogs["depth(m)"] = catalogs["z(km)"].apply(lambda x: x * 1e3) |
|
|
|
assignments = pd.DataFrame(assignments, columns=["pick_index", "event_index", "gamma_score"]) |
|
picks_gamma = picks.join(assignments.set_index("pick_index")).fillna(-1).astype({"event_index": int}) |
|
|
|
return catalogs, picks_gamma |
|
|
|
|
|
@app.post("/predict_stream") |
|
def predict(data: Pick): |
|
|
|
picks = pd.DataFrame(data.picks) |
|
if len(picks) == 0: |
|
return {"catalog": [], "picks": []} |
|
|
|
catalogs, picks_gamma = run_gamma(data, config, stations) |
|
|
|
if use_kafka: |
|
print("Push events to kafka...") |
|
for event in catalogs.to_dict(orient="records"): |
|
producer.send("gmma_events", key=event["time"], value=event) |
|
|
|
return {"catalog": catalogs.to_dict(orient="records"), "picks": picks_gamma.to_dict(orient="records")} |
|
|
|
|
|
@app.post("/predict") |
|
def predict(data: Data): |
|
|
|
picks = pd.DataFrame(data.picks) |
|
if len(picks) == 0: |
|
return {"catalog": [], "picks": []} |
|
|
|
stations = pd.DataFrame(data.stations) |
|
if len(stations) == 0: |
|
return {"catalog": [], "picks": []} |
|
|
|
assert "latitude" in stations |
|
assert "longitude" in stations |
|
assert "elevation(m)" in stations |
|
|
|
config = data.config |
|
config = default_config(config) |
|
|
|
if "xlim_degree" not in config: |
|
config["xlim_degree"] = (stations["longitude"].min(), stations["longitude"].max()) |
|
if "ylim_degree" not in config: |
|
config["ylim_degree"] = (stations["latitude"].min(), stations["latitude"].max()) |
|
if "center" not in config: |
|
config["center"] = [np.mean(config["xlim_degree"]), np.mean(config["ylim_degree"])] |
|
if "x(km)" not in config: |
|
config["x(km)"] = ( |
|
(np.array(config["xlim_degree"]) - config["center"][0]) |
|
* config["degree2km"] |
|
* np.cos(np.deg2rad(config["center"][1])) |
|
) |
|
if "y(km)" not in config: |
|
config["y(km)"] = (np.array(config["ylim_degree"]) - config["center"][1]) * config["degree2km"] |
|
if "z(km)" not in config: |
|
config["z(km)"] = (0, 41) |
|
if "bfgs_bounds" not in config: |
|
config["bfgs_bounds"] = [list(config[x]) for x in config["dims"]] + [[None, None]] |
|
|
|
catalogs, picks_gamma = run_gamma(picks, config, stations) |
|
|
|
if use_kafka: |
|
print("Push events to kafka...") |
|
for event in catalogs.to_dict(orient="records"): |
|
producer.send("gamma_events", key=event["time"], value=event) |
|
|
|
return {"catalog": catalogs.to_dict(orient="records"), "picks": picks_gamma.to_dict(orient="records")} |
|
|
|
|
|
@app.get("/healthz") |
|
def healthz(): |
|
return {"status": "ok"} |
|
|