File size: 5,068 Bytes
0687bfd
 
 
 
 
 
4575207
16df41c
a536fa6
f76ab84
 
4575207
bd369fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9eab5bd
f76ab84
4575207
 
4411cf7
4575207
 
 
f76ab84
bd369fc
4411cf7
bd369fc
 
4411cf7
bd369fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4575207
 
 
bd369fc
4575207
f76ab84
4575207
 
 
 
 
 
16df41c
0687bfd
 
 
b5b37c1
0687bfd
 
 
 
a2c400b
0687bfd
a2c400b
34c8d24
a2c400b
34c8d24
 
0bb735b
9eab5bd
 
 
b5b37c1
34c8d24
 
 
9eab5bd
a2c400b
9e2fdc0
66838c3
9eab5bd
1cdf5d6
9eab5bd
9e2fdc0
 
 
9eab5bd
 
25ce5b4
1cdf5d6
436eb46
9eab5bd
1cdf5d6
9e2fdc0
25ce5b4
 
b5b37c1
0687bfd
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import streamlit as st
import pandas as pd
from PIL import Image, ImageDraw, ImageFont
import io

def main():
    # Sidebar logo and title
    st.sidebar.image("logo.png", use_container_width=True)  # Display the logo at the top
    st.sidebar.title("Label Generator")
    st.sidebar.markdown("For [AI Energy Score Leaderboard](https://huggingface.co/spaces/AIEnergyScore/Leaderboard)")


    # Initialize data_df
    data_df = None

    # Read Data from CSV
    try:
        data_df = pd.read_csv("data.csv")
    except FileNotFoundError:
        st.sidebar.error("Could not find 'data.csv'! Please make sure it's present.")
        return
    except Exception as e:
        st.sidebar.error(f"Error reading 'data.csv': {e}")
        return

    # Ensure the CSV has required columns
    required_columns = ["model", "provider", "date", "task", "hardware", "energy", "score"]
    for col in required_columns:
        if col not in data_df.columns:
            st.sidebar.error(f"The CSV file must contain a column named '{col}'.")
            return

    # Dropdown for selecting a model
    st.sidebar.write("### Instructions:")
    st.sidebar.write("1. Select a model below")
    model_options = data_df["model"].unique().tolist()  # Get model options
    selected_model = st.sidebar.selectbox(
        "Scored Models", model_options, help="Start typing to search for a model"
    )  # Searchable dropdown

    # Add step 2 instructions and move the Download button
    st.sidebar.write("2. Download the label")

    # Filter the data for the selected model
    model_data = data_df[data_df["model"] == selected_model].iloc[0]

    # Dynamically select the background image based on the score
    try:
        score = int(model_data["score"])  # Convert to int
        background_path = f"{score}.png"  # E.g., "1.png", "2.png"
        background = Image.open(background_path).convert("RGBA")

        # Proportional scaling to fit within the target size
        target_size = (800, 600)  # Maximum width and height
        background.thumbnail(target_size, Image.Resampling.LANCZOS)

    except FileNotFoundError:
        st.sidebar.error(f"Could not find background image '{score}.png'. Using default background.")
        background = Image.open("default_background.png").convert("RGBA")
        background.thumbnail(target_size, Image.Resampling.LANCZOS)  # Resize default image proportionally
    except ValueError:
        st.sidebar.error(f"Invalid score '{model_data['score']}'. Score must be an integer.")
        return

    # Generate the label with text
    generated_label = create_label(background, model_data)

    # Display the label
    st.image(generated_label, caption="Generated Label Preview")

    # Download button for the label
    img_buffer = io.BytesIO()
    generated_label.save(img_buffer, format="PNG")
    img_buffer.seek(0)

    st.sidebar.download_button(
        label="Download",
        data=img_buffer,
        file_name="AIEnergyScore.png",
        mime="image/png"
    )

    # Step 3 instructions
    st.sidebar.write("3. Share your label in technical reports, announcements, etc.")

def create_label(background_image, model_data):
    """
    Create the label image by adding text from model_data to the background image.
    """
    label_img = background_image.convert("RGBA")
    draw = ImageDraw.Draw(label_img)

    # Load fonts
    try:
        # Use Inter_24pt-Bold.ttf for the title
        title_font = ImageFont.truetype("Inter_24pt-Bold.ttf", size=22)  # Bold for title
        # Use Inter-Regular.ttf for details and energy
        details_font = ImageFont.truetype("Inter_18pt-Regular.ttf", size=18)  # Regular for details
        energy_font = ImageFont.truetype("Inter_18pt-Medium.ttf", size=20)  # Medium for energy
    except Exception as e:
        st.error(f"Font loading failed: {e}")
        return label_img

    # Define positions for each text group
    title_x, title_y = 28, 128
    details_x, details_y = 375, 210
    energy_x, energy_y = 350, 390

    # Group 1: Title (Bold)
    draw.text((title_x, title_y), str(model_data['model']), font=title_font, fill="black")
    draw.text((title_x, title_y + 30), str(model_data['provider']), font=title_font, fill="black")

    # Group 2: Details (Right-Justified, no prefixes)
    details_lines = [
        str(model_data['date']),
        str(model_data['task']),
        str(model_data['hardware'])
    ]
    for i, line in enumerate(details_lines):
        bbox = draw.textbbox((0, 0), line, font=details_font)
        text_width = bbox[2] - bbox[0]
        draw.text((details_x - text_width, details_y + i * 40), line, font=details_font, fill="black")

    # Group 3: Energy (Bottom-Center, no prefixes)
    energy_text = str(model_data['energy'])  # Ensure this is a string
    bbox = draw.textbbox((0, 0), energy_text, font=energy_font)
    energy_text_width = bbox[2] - bbox[0]
    draw.text((energy_x - energy_text_width // 2, energy_y), energy_text, font=energy_font, fill="black")

    return label_img

if __name__ == "__main__":
    main()