Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 10,694 Bytes
9f44d20 d306dfd 5664d71 9f44d20 8e1f9af 9f44d20 a30a228 9c49811 f30cbcc 4a6f9cd 8e1f9af 77ded94 93fda91 08fea1e 9c49811 6925231 9c49811 658d5a4 9c49811 f03a7b5 9c49811 32ebf18 9c49811 32ebf18 9c49811 6d7eea4 df659d0 f30cbcc df659d0 1a2dba5 df659d0 2edd122 df659d0 9400714 df659d0 2edd122 6d7eea4 df659d0 6d7eea4 df659d0 2edd122 3bab3e9 af8395f 9c49811 f30cbcc 1a2dba5 f30cbcc 9c49811 2edd122 3bab3e9 7ca7624 b80bda9 2edd122 9c49811 3bab3e9 9c49811 f8b3d0f 9c49811 3bab3e9 77ded94 9c49811 6925231 af8395f 9c49811 77ded94 3bab3e9 eb0f9c5 3bab3e9 77ded94 5808d8f f30cbcc 3bab3e9 eb0f9c5 f30cbcc 3bab3e9 77ded94 f30cbcc 5808d8f f30cbcc 5808d8f 77ded94 5808d8f f30cbcc a30a228 f30cbcc af8395f 77ded94 f30cbcc 1a2dba5 a30a228 f30cbcc af8395f 77ded94 f30cbcc 36c5a0c d00fb74 9f44d20 4a6f9cd 8e1f9af 5664d71 d306dfd 240d9ce 93fda91 240d9ce 4a6f9cd 318fc6c 240d9ce 4a6f9cd 9f44d20 d306dfd 5664d71 d306dfd 9f44d20 158e42c 240d9ce 158e42c 9f44d20 240d9ce 9f44d20 240d9ce 4a6f9cd 7dac66f 4a6f9cd 5664d71 9f44d20 9e747ff 9f44d20 240d9ce 9f44d20 240d9ce 4a6f9cd 9d64883 4a6f9cd 9002757 b80bda9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
import json
import hashlib
from datetime import datetime, timezone
from pathlib import Path
from typing import List
import pandas as pd
from src.benchmarks import BENCHMARK_COLS_QA, BENCHMARK_COLS_LONG_DOC, BenchmarksQA, BenchmarksLongDoc
from src.display.formatting import styled_message, styled_error
from src.display.utils import COLS_QA, TYPES_QA, COLS_LONG_DOC, TYPES_LONG_DOC, COL_NAME_RANK, COL_NAME_AVG, \
COL_NAME_RERANKING_MODEL, COL_NAME_RETRIEVAL_MODEL, COL_NAME_IS_ANONYMOUS, COL_NAME_TIMESTAMP, COL_NAME_REVISION, get_default_auto_eval_column_dict
from src.envs import API, SEARCH_RESULTS_REPO, LATEST_BENCHMARK_VERSION
from src.read_evals import FullEvalResult, get_leaderboard_df, calculate_mean
import re
def remove_html(input_str):
# Regular expression for finding HTML tags
clean = re.sub(r'<.*?>', '', input_str)
return clean
def filter_models(df: pd.DataFrame, reranking_query: list) -> pd.DataFrame:
if not reranking_query:
return df
else:
return df.loc[df[COL_NAME_RERANKING_MODEL].apply(remove_html).isin(reranking_query)]
def filter_queries(query: str, df: pd.DataFrame) -> pd.DataFrame:
filtered_df = df.copy()
final_df = []
if query != "":
queries = [q.strip() for q in query.split(";")]
for _q in queries:
_q = _q.strip()
if _q != "":
temp_filtered_df = search_table(filtered_df, _q)
if len(temp_filtered_df) > 0:
final_df.append(temp_filtered_df)
if len(final_df) > 0:
filtered_df = pd.concat(final_df)
filtered_df = filtered_df.drop_duplicates(
subset=[
COL_NAME_RETRIEVAL_MODEL,
COL_NAME_RERANKING_MODEL,
]
)
return filtered_df
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
return df[(df[COL_NAME_RETRIEVAL_MODEL].str.contains(query, case=False))]
def get_default_cols(task: str, columns: list=[], add_fix_cols: bool=True) -> list:
cols = []
types = []
if task == "qa":
cols_list = COLS_QA
types_list = TYPES_QA
benchmark_list = BENCHMARK_COLS_QA
elif task == "long-doc":
cols_list = COLS_LONG_DOC
types_list = TYPES_LONG_DOC
benchmark_list = BENCHMARK_COLS_LONG_DOC
else:
raise NotImplemented
for col_name, col_type in zip(cols_list, types_list):
if col_name not in benchmark_list:
continue
if len(columns) > 0 and col_name not in columns:
continue
cols.append(col_name)
types.append(col_type)
if add_fix_cols:
_cols = []
_types = []
for col_name, col_type in zip(cols, types):
if col_name in FIXED_COLS:
continue
_cols.append(col_name)
_types.append(col_type)
cols = FIXED_COLS + _cols
types = FIXED_COLS_TYPES + _types
return cols, types
fixed_cols = get_default_auto_eval_column_dict()[:-3]
FIXED_COLS = [c.name for _, _, c in fixed_cols]
FIXED_COLS_TYPES = [c.type for _, _, c in fixed_cols]
def select_columns(
df: pd.DataFrame,
domain_query: list,
language_query: list,
task: str = "qa",
reset_ranking: bool = True
) -> pd.DataFrame:
cols, _ = get_default_cols(task=task, columns=df.columns, add_fix_cols=False)
selected_cols = []
for c in cols:
if task == "qa":
eval_col = BenchmarksQA[c].value
elif task == "long-doc":
eval_col = BenchmarksLongDoc[c].value
if eval_col.domain not in domain_query:
continue
if eval_col.lang not in language_query:
continue
selected_cols.append(c)
# We use COLS to maintain sorting
filtered_df = df[FIXED_COLS + selected_cols]
if reset_ranking:
filtered_df[COL_NAME_AVG] = filtered_df[selected_cols].apply(calculate_mean, axis=1).round(decimals=2)
filtered_df.sort_values(by=[COL_NAME_AVG], ascending=False, inplace=True)
filtered_df.reset_index(inplace=True, drop=True)
filtered_df = reset_rank(filtered_df)
return filtered_df
def _update_table(
task: str,
hidden_df: pd.DataFrame,
domains: list,
langs: list,
reranking_query: list,
query: str,
show_anonymous: bool,
reset_ranking: bool = True,
show_revision_and_timestamp: bool = False
):
filtered_df = hidden_df.copy()
if not show_anonymous:
filtered_df = filtered_df[~filtered_df[COL_NAME_IS_ANONYMOUS]]
filtered_df = filter_models(filtered_df, reranking_query)
filtered_df = filter_queries(query, filtered_df)
filtered_df = select_columns(filtered_df, domains, langs, task, reset_ranking)
if not show_revision_and_timestamp:
filtered_df.drop([COL_NAME_REVISION, COL_NAME_TIMESTAMP], axis=1, inplace=True)
return filtered_df
def update_table(
hidden_df: pd.DataFrame,
domains: list,
langs: list,
reranking_query: list,
query: str,
show_anonymous: bool,
show_revision_and_timestamp: bool = False,
reset_ranking: bool = True
):
return _update_table(
"qa", hidden_df, domains, langs, reranking_query, query, show_anonymous, reset_ranking, show_revision_and_timestamp)
def update_table_long_doc(
hidden_df: pd.DataFrame,
domains: list,
langs: list,
reranking_query: list,
query: str,
show_anonymous: bool,
show_revision_and_timestamp: bool = False,
reset_ranking: bool = True
):
return _update_table(
"long-doc", hidden_df, domains, langs, reranking_query, query, show_anonymous, reset_ranking, show_revision_and_timestamp)
def update_metric(
raw_data: List[FullEvalResult],
task: str,
metric: str,
domains: list,
langs: list,
reranking_model: list,
query: str,
show_anonymous: bool = False,
show_revision_and_timestamp: bool = False,
) -> pd.DataFrame:
if task == 'qa':
leaderboard_df = get_leaderboard_df(raw_data, task=task, metric=metric)
return update_table(
leaderboard_df,
domains,
langs,
reranking_model,
query,
show_anonymous,
show_revision_and_timestamp
)
elif task == "long-doc":
leaderboard_df = get_leaderboard_df(raw_data, task=task, metric=metric)
return update_table_long_doc(
leaderboard_df,
domains,
langs,
reranking_model,
query,
show_anonymous,
show_revision_and_timestamp
)
def upload_file(filepath: str):
if not filepath.endswith(".zip"):
print(f"file uploading aborted. wrong file type: {filepath}")
return filepath
return filepath
def get_iso_format_timestamp():
# Get the current timestamp with UTC as the timezone
current_timestamp = datetime.now(timezone.utc)
# Remove milliseconds by setting microseconds to zero
current_timestamp = current_timestamp.replace(microsecond=0)
# Convert to ISO 8601 format and replace the offset with 'Z'
iso_format_timestamp = current_timestamp.isoformat().replace('+00:00', 'Z')
filename_friendly_timestamp = current_timestamp.strftime('%Y%m%d%H%M%S')
return iso_format_timestamp, filename_friendly_timestamp
def calculate_file_md5(file_path):
md5 = hashlib.md5()
with open(file_path, 'rb') as f:
while True:
data = f.read(4096)
if not data:
break
md5.update(data)
return md5.hexdigest()
def submit_results(
filepath: str,
model: str,
model_url: str,
reranking_model: str="",
reranking_model_url: str="",
version: str=LATEST_BENCHMARK_VERSION,
is_anonymous=False):
if not filepath.endswith(".zip"):
return styled_error(f"file uploading aborted. wrong file type: {filepath}")
# validate model
if not model:
return styled_error("failed to submit. Model name can not be empty.")
# validate model url
if not is_anonymous:
if not model_url.startswith("https://") and not model_url.startswith("http://"):
# TODO: retrieve the model page and find the model name on the page
return styled_error(
f"failed to submit. Model url must start with `https://` or `http://`. Illegal model url: {model_url}")
if reranking_model != "NoReranker":
if not reranking_model_url.startswith("https://") and not reranking_model_url.startswith("http://"):
return styled_error(
f"failed to submit. Model url must start with `https://` or `http://`. Illegal model url: {model_url}")
# rename the uploaded file
input_fp = Path(filepath)
revision = calculate_file_md5(filepath)
timestamp_config, timestamp_fn = get_iso_format_timestamp()
output_fn = f"{timestamp_fn}-{revision}.zip"
input_folder_path = input_fp.parent
if not reranking_model:
reranking_model = 'NoReranker'
API.upload_file(
path_or_fileobj=filepath,
path_in_repo=f"{version}/{model}/{reranking_model}/{output_fn}",
repo_id=SEARCH_RESULTS_REPO,
repo_type="dataset",
commit_message=f"feat: submit {model} to evaluate")
output_config_fn = f"{output_fn.removesuffix('.zip')}.json"
output_config = {
"model_name": f"{model}",
"model_url": f"{model_url}",
"reranker_name": f"{reranking_model}",
"reranker_url": f"{reranking_model_url}",
"version": f"{version}",
"is_anonymous": is_anonymous,
"revision": f"{revision}",
"timestamp": f"{timestamp_config}"
}
with open(input_folder_path / output_config_fn, "w") as f:
json.dump(output_config, f, indent=4, ensure_ascii=False)
API.upload_file(
path_or_fileobj=input_folder_path / output_config_fn,
path_in_repo=f"{version}/{model}/{reranking_model}/{output_config_fn}",
repo_id=SEARCH_RESULTS_REPO,
repo_type="dataset",
commit_message=f"feat: submit {model} + {reranking_model} config")
return styled_message(
f"Thanks for submission!\n"
f"Retrieval method: {model}\nReranking model: {reranking_model}\nSubmission revision: {revision}"
)
def reset_rank(df):
df[COL_NAME_RANK] = df[COL_NAME_AVG].rank(ascending=False, method="min")
return df
|