|
import streamlit as st |
|
from streamlit_float import * |
|
from streamlit_antd_components import * |
|
from streamlit.components.v1 import html |
|
import spacy |
|
from spacy import displacy |
|
import spacy_streamlit |
|
import pandas as pd |
|
import base64 |
|
import re |
|
|
|
from .morphosyntax_process import ( |
|
process_morphosyntactic_input, |
|
format_analysis_results, |
|
perform_advanced_morphosyntactic_analysis, |
|
get_repeated_words_colors, |
|
highlight_repeated_words, |
|
POS_COLORS, |
|
POS_TRANSLATIONS |
|
) |
|
|
|
from ..utils.widget_utils import generate_unique_key |
|
from ..database.morphosintax_mongo_db import store_student_morphosyntax_result |
|
from ..database.chat_mongo_db import store_chat_history, get_chat_history |
|
|
|
import logging |
|
logger = logging.getLogger(__name__) |
|
|
|
def display_morphosyntax_interface(lang_code, nlp_models, morpho_t): |
|
try: |
|
|
|
st.markdown(""" |
|
<style> |
|
.stTextArea textarea { |
|
font-size: 1rem; |
|
line-height: 1.5; |
|
resize: vertical; |
|
} |
|
.block-container { |
|
padding-top: 1rem; |
|
padding-bottom: 1rem; |
|
} |
|
.stExpander { |
|
border: none; |
|
box-shadow: 0 1px 2px rgba(0,0,0,0.1); |
|
margin-bottom: 1rem; |
|
} |
|
.legend-container { |
|
position: sticky; |
|
top: 0; |
|
background: white; |
|
z-index: 100; |
|
padding: 0.5rem 0; |
|
border-bottom: 1px solid #eee; |
|
} |
|
</style> |
|
""", unsafe_allow_html=True) |
|
|
|
|
|
if 'morphosyntax_state' not in st.session_state: |
|
st.session_state.morphosyntax_state = { |
|
'input_text': "", |
|
'analysis_count': 0, |
|
'last_analysis': None, |
|
'current_tab': 0 |
|
} |
|
|
|
|
|
with st.container(): |
|
|
|
input_key = f"morpho_input_{st.session_state.morphosyntax_state['analysis_count']}" |
|
sentence_input = st.text_area( |
|
morpho_t.get('morpho_input_label', 'Enter text to analyze'), |
|
height=150, |
|
placeholder=morpho_t.get('morpho_input_placeholder', 'Enter your text here...'), |
|
key=input_key, |
|
on_change=lambda: None |
|
) |
|
|
|
|
|
col1, col2, col3 = st.columns([2,1,2]) |
|
with col1: |
|
analyze_button = st.button( |
|
morpho_t.get('morpho_analyze_button', 'Analyze Morphosyntax'), |
|
key=f"morpho_button_{st.session_state.morphosyntax_state['analysis_count']}", |
|
type="primary", |
|
icon="🔍", |
|
disabled=not bool(sentence_input.strip()), |
|
use_container_width=True |
|
) |
|
|
|
|
|
if analyze_button and sentence_input.strip(): |
|
try: |
|
with st.spinner(morpho_t.get('processing', 'Processing...')): |
|
doc = nlp_models[lang_code](sentence_input) |
|
advanced_analysis = perform_advanced_morphosyntactic_analysis( |
|
sentence_input, |
|
nlp_models[lang_code] |
|
) |
|
|
|
st.session_state.morphosyntax_result = { |
|
'doc': doc, |
|
'advanced_analysis': advanced_analysis |
|
} |
|
st.session_state.morphosyntax_state['analysis_count'] += 1 |
|
|
|
|
|
if store_student_morphosyntax_result( |
|
username=st.session_state.username, |
|
text=sentence_input, |
|
arc_diagrams=advanced_analysis['arc_diagrams'] |
|
): |
|
st.success(morpho_t.get('success_message', 'Analysis saved successfully')) |
|
st.session_state.morphosyntax_state['current_tab'] = 0 |
|
display_morphosyntax_results( |
|
st.session_state.morphosyntax_result, |
|
lang_code, |
|
morpho_t |
|
) |
|
else: |
|
st.error(morpho_t.get('error_message', 'Error saving analysis')) |
|
|
|
except Exception as e: |
|
logger.error(f"Error en análisis morfosintáctico: {str(e)}") |
|
st.error(morpho_t.get('error_processing', f'Error processing text: {str(e)}')) |
|
|
|
|
|
elif 'morphosyntax_result' in st.session_state and st.session_state.morphosyntax_result: |
|
display_morphosyntax_results( |
|
st.session_state.morphosyntax_result, |
|
lang_code, |
|
morpho_t |
|
) |
|
elif not sentence_input.strip(): |
|
st.info(morpho_t.get('morpho_initial_message', 'Enter text to begin analysis')) |
|
|
|
except Exception as e: |
|
logger.error(f"Error general en display_morphosyntax_interface: {str(e)}") |
|
st.error("Se produjo un error. Por favor, intente de nuevo.") |
|
|
|
def display_morphosyntax_results(result, lang_code, morpho_t): |
|
if result is None: |
|
st.warning(morpho_t.get('no_results', 'No results available')) |
|
return |
|
|
|
doc = result['doc'] |
|
advanced_analysis = result['advanced_analysis'] |
|
|
|
|
|
with st.container(): |
|
st.markdown(f"##### {morpho_t.get('legend', 'Legend: Grammatical categories')}") |
|
legend_html = "<div class='legend-container'><div style='display: flex; flex-wrap: wrap;'>" |
|
for pos, color in POS_COLORS.items(): |
|
if pos in POS_TRANSLATIONS[lang_code]: |
|
legend_html += f"<div style='margin-right: 10px;'><span style='background-color: {color}; padding: 2px 5px;'>{POS_TRANSLATIONS[lang_code][pos]}</span></div>" |
|
legend_html += "</div></div>" |
|
st.markdown(legend_html, unsafe_allow_html=True) |
|
|
|
|
|
with st.expander(morpho_t.get('repeated_words', 'Repeated words'), expanded=True): |
|
word_colors = get_repeated_words_colors(doc) |
|
highlighted_text = highlight_repeated_words(doc, word_colors) |
|
st.markdown(highlighted_text, unsafe_allow_html=True) |
|
|
|
|
|
with st.expander(morpho_t.get('arc_diagram', 'Syntactic analysis: Arc diagram'), expanded=True): |
|
sentences = list(doc.sents) |
|
for i, sent in enumerate(sentences): |
|
st.subheader(f"{morpho_t.get('sentence', 'Sentence')} {i+1}") |
|
html = displacy.render(sent, style="dep", options={"distance": 100}) |
|
html = html.replace('height="375"', 'height="200"') |
|
html = re.sub(r'<svg[^>]*>', lambda m: m.group(0).replace('height="450"', 'height="300"'), html) |
|
html = re.sub(r'<g [^>]*transform="translate\((\d+),(\d+)\)"', |
|
lambda m: f'<g transform="translate({m.group(1)},50)"', html) |
|
st.write(html, unsafe_allow_html=True) |
|
|
|
|
|
with st.expander(morpho_t.get('sentence_structure', 'Sentence structure'), expanded=True): |
|
for i, sent_analysis in enumerate(advanced_analysis['sentence_structure']): |
|
sentence_str = ( |
|
f"**{morpho_t.get('sentence', 'Sentence')} {i+1}** " |
|
f"{morpho_t.get('root', 'Root')}: {sent_analysis['root']} ({sent_analysis['root_pos']}) -- " |
|
f"{morpho_t.get('subjects', 'Subjects')}: {', '.join(sent_analysis['subjects'])} -- " |
|
f"{morpho_t.get('objects', 'Objects')}: {', '.join(sent_analysis['objects'])} -- " |
|
f"{morpho_t.get('verbs', 'Verbs')}: {', '.join(sent_analysis['verbs'])}" |
|
) |
|
st.markdown(sentence_str) |
|
|
|
|
|
with st.expander(morpho_t.get('pos_analysis', 'Part of speech'), expanded=True): |
|
pos_df = pd.DataFrame(advanced_analysis['pos_analysis']) |
|
pos_df['pos'] = pos_df['pos'].map(lambda x: POS_TRANSLATIONS[lang_code].get(x, x)) |
|
pos_df = pos_df.rename(columns={ |
|
'pos': morpho_t.get('grammatical_category', 'Grammatical category'), |
|
'count': morpho_t.get('count', 'Count'), |
|
'percentage': morpho_t.get('percentage', 'Percentage'), |
|
'examples': morpho_t.get('examples', 'Examples') |
|
}) |
|
st.dataframe(pos_df, use_container_width=True) |
|
|
|
|
|
with st.expander(morpho_t.get('morphological_analysis', 'Morphological Analysis'), expanded=True): |
|
morph_df = pd.DataFrame(advanced_analysis['morphological_analysis']) |
|
column_mapping = { |
|
'text': morpho_t.get('word', 'Word'), |
|
'lemma': morpho_t.get('lemma', 'Lemma'), |
|
'pos': morpho_t.get('grammatical_category', 'Grammatical category'), |
|
'dep': morpho_t.get('dependency', 'Dependency'), |
|
'morph': morpho_t.get('morphology', 'Morphology') |
|
} |
|
morph_df = morph_df.rename(columns=column_mapping) |
|
|
|
|
|
grammatical_category = morpho_t.get('grammatical_category', 'Grammatical category') |
|
morph_df[grammatical_category] = morph_df[grammatical_category].map( |
|
lambda x: POS_TRANSLATIONS[lang_code].get(x, x) |
|
) |
|
|
|
|
|
dependency = morpho_t.get('dependency', 'Dependency') |
|
morphology = morpho_t.get('morphology', 'Morphology') |
|
|
|
def translate_morph(morph_string, lang_code): |
|
for key, value in morph_translations[lang_code].items(): |
|
morph_string = morph_string.replace(key, value) |
|
return morph_string |
|
|
|
morph_df[dependency] = morph_df[dependency].map( |
|
lambda x: dep_translations[lang_code].get(x, x) |
|
) |
|
morph_df[morphology] = morph_df[morphology].apply( |
|
lambda x: translate_morph(x, lang_code) |
|
) |
|
|
|
st.dataframe(morph_df, use_container_width=True) |