File size: 8,671 Bytes
a5e5bde
33d0c27
ee56cf8
 
a5e5bde
d0d0416
 
 
0d1bfaa
 
 
 
ceeea5f
0d1bfaa
a5e5bde
ee56cf8
 
 
 
 
c3e8fb1
 
 
 
 
53b9021
 
 
 
ceeea5f
 
 
0d1bfaa
ceeea5f
 
 
 
53b9021
0d1bfaa
ceeea5f
0d1bfaa
ceeea5f
 
 
 
 
0d1bfaa
ceeea5f
 
 
0d1bfaa
 
ceeea5f
 
 
 
 
0d1bfaa
ceeea5f
0d1bfaa
 
ceeea5f
 
 
 
0d1bfaa
ceeea5f
 
 
0d1bfaa
ceeea5f
0d1bfaa
 
ceeea5f
 
 
 
0d1bfaa
ee56cf8
0d1bfaa
ee56cf8
 
 
 
 
 
 
 
 
 
 
 
 
 
53b9021
 
ceeea5f
 
 
 
 
 
53b9021
ceeea5f
53b9021
ceeea5f
53b9021
ceeea5f
 
 
 
 
 
 
 
53b9021
ceeea5f
 
 
 
 
 
 
 
 
 
 
 
53b9021
 
 
 
 
 
 
ceeea5f
 
 
 
 
 
 
 
 
 
ee56cf8
 
 
 
 
ceeea5f
 
 
ee56cf8
 
 
 
ceeea5f
 
 
 
 
 
53b9021
 
ee56cf8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33d0c27
a5e5bde
 
53b9021
 
ee56cf8
e2f5cf3
c3e8fb1
ee56cf8
a5e5bde
ee56cf8
 
a5e5bde
 
 
53b9021
a5e5bde
 
 
 
 
53b9021
a5e5bde
53b9021
 
 
 
 
 
a5e5bde
33d0c27
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import gradio as gr
import pandas as pd
import plotly.graph_objects as go
from plotly.subplots import make_subplots

from rl_agent.env import Environment
from rl_agent.policy import Policy
from rl_agent.utils import myOptimizer

import torch
from collections import OrderedDict
from tqdm import tqdm
import statistics


import datetime
def get_time():
    return datetime.datetime.now().time()


def get_profit():
    global profit
    return profit


# def update_table():
#     global


def pretrain_rl_agent():
    global equity
    observations = env_train.reset()

    for _ in tqdm(range(state_size, len(train))):
        observations = torch.as_tensor(observations).float()
        action = agent(observations)
        observations, reward, _ = env_train.step(action.data.to("cpu").numpy())
        # reward *= 1e3

        action.backward()

        for name, param in agent.named_parameters():
            grad_n = param.grad
            param = param + optimizer.step(grad_n, reward, observations[-1], model_gradients_history[name])
            checkpoint[name] = param
            model_gradients_history.update({name: grad_n})

        # equity += env_train.profit
        optimizer.after_step(reward)
        agent.load_state_dict(checkpoint)


def make_prediction(observations):
    # observations: 0-14
    action = agent(torch.as_tensor(observations).float())
    # returned observation: 1- 15
    observations, reward, _ = env_test.step(action.data.to("cpu").numpy())

    action.backward()

    for name, param in agent.named_parameters():
        grad_n = param.grad
        param = param + optimizer.step(grad_n, reward, observations[-1], model_gradients_history[name])
        checkpoint[name] = param
        model_gradients_history.update({name: grad_n})

    # equity += env_test.profit
    optimizer.after_step(reward)
    agent.load_state_dict(checkpoint)

    return action, observations   # [-1.0, 1.0] * leverage


# ----------------------------------------------------------------------------------------------------------------------
#   For visualization
# ----------------------------------------------------------------------------------------------------------------------
profit = 0.0

counter = 0
start_year, test_year = 2021, 2023
datetime_column = "Date"
df_data = pd.read_csv(f"./data/EURUSD_Candlestick_1_M_BID_01.01.{start_year}-04.02.2023_processed.csv")
df_data[datetime_column] = pd.to_datetime(df_data[datetime_column], format="%Y-%m-%d")    # %d.%m.%Y %H:%M:%S.000 GMT%z

# Removing all empty dates
# Build complete timeline from start date to end date
dt_all = pd.date_range(start=df_data[datetime_column].tolist()[0], end=df_data[datetime_column].tolist()[-1])
# Retrieve the dates that ARE in the original dataset
dt_obs = set([d.strftime("%Y-%m-%d") for d in pd.to_datetime(df_data[datetime_column])])
# Define dates with missing values
dt_breaks = [d for d in dt_all.strftime("%Y-%m-%d").tolist() if not d in list(dt_obs)]

df_data_test = df_data[df_data['Date'].dt.year == test_year]
df_data_train = df_data[df_data['Date'].dt.year != test_year]

df_data_train_viz = pd.DataFrame(columns=["Action", "Amount", "Profit"])
# ----------------------------------------------------------------------------------------------------------------------

# ----------------------------------------------------------------------------------------------------------------------
#   For RL Agent
# ----------------------------------------------------------------------------------------------------------------------
data = pd.read_csv(f'./data/EURUSD_Candlestick_1_M_BID_01.01.{start_year}-04.02.2023.csv')
data = data.head(600000)
data = data.set_index('Local time')
date_split = '31.01.2022 03:29:00.000 GMT-0600'

learning_rate = 0.001
first_momentum = 0.0
second_momentum = 0.0001
transaction_cost = 0.0001
adaptation_rate = 0.01
state_size = 15
equity = 1.0

train = data[:date_split]
test = pd.concat([train.tail(state_size), data[date_split:]])

# Initialize agent and optimizer
agent = Policy(input_channels=state_size)
optimizer = myOptimizer(learning_rate, first_momentum, second_momentum, adaptation_rate, transaction_cost)

history = []
for i in range(1, state_size):
    c = train.iloc[i, :]['Close'] - train.iloc[i - 1, :]['Close']
    history.append(c)

# Initialize train and test environments
env_train = Environment(train, history=history, state_size=state_size)

history = []
for i in range(1, state_size):
    c = test.iloc[i, :]['Close'] - test.iloc[i - 1, :]['Close']
    history.append(c)

env_test = Environment(test, history=history, state_size=state_size)

model_gradients_history = dict()
checkpoint = OrderedDict()

for name, param in agent.named_parameters():
    model_gradients_history.update({name: torch.zeros_like(param)})

pretrain_rl_agent()
observations = env_test.reset()
# ----------------------------------------------------------------------------------------------------------------------


def trading_plot():
    global counter
    global df_data_train
    global observations
    global profit
    actions = []

    if counter < len(df_data_test):
        df_data_train = df_data_train.append(df_data_test.iloc[counter])
        counter += 1

        last_observation = observations[-1]
        for i in range(1440):
            action, observations = make_prediction(observations)
            actions.append(action.item())
        position = statistics.mean(actions)
        # profit += -1.0 * (last_observation - observations[-1]) * position
        profit = env_test.profits
    else:
        df_data_train = df_data

    fig = make_subplots(rows=2, cols=1, shared_xaxes=True, vertical_spacing=0.02, row_heights=[0.7, 0.3],
                        subplot_titles=['OHLC chart', ''])

    # Plot OHLC on 1st subplot
    fig.add_trace(go.Candlestick(x=df_data_train[datetime_column].tolist(),
                                 open=df_data_train["Open"].tolist(), close=df_data_train["Close"].tolist(),
                                 high=df_data_train["High"].tolist(), low=df_data_train["Low"].tolist(),
                                 name=""), row=1, col=1)

    # Plot volume trace on 2nd row
    colors = ['red' if row['Open'] - row['Close'] >= 0 else 'green' for index, row in df_data_train.iterrows()]
    fig.add_trace(go.Bar(x=df_data_train[datetime_column], y=df_data_train['Volume'], name="", marker_color=colors,
                         hovertemplate="%{x}<br>Volume: %{y}"), row=2, col=1)

    # Add chart title and Hide dates with no values and remove rangeslider
    fig.update_layout(title="", height=600, showlegend=False,
                      xaxis_rangeslider_visible=False,
                      xaxis_rangebreaks=[dict(values=dt_breaks)])

    # Update y-axis label
    fig.update_yaxes(title_text="Price", row=1, col=1)
    fig.update_yaxes(title_text="Volume", row=2, col=1)

    fig.update_xaxes(showspikes=True, spikecolor="green", spikesnap="cursor", spikemode="across")
    fig.update_yaxes(showspikes=True, spikecolor="orange", spikethickness=2)
    fig.update_layout(spikedistance=1000, hoverdistance=100)

    fig.layout.xaxis.range = ("2022-12-01", "2023-03-01")

    return fig


# The UI of the demo defines here.
with gr.Blocks() as demo:
    gr.Markdown("Auto AI Trading Bot")
    gr.Markdown(f"Investment: $100,000")

    dt = gr.Textbox(label="Total profit (Amount of profit in PIPS that the agent makes in EUR/USD)")
    demo.queue().load(get_profit, inputs=None, outputs=dt, every=1)

    # for plotly it should follow this: https://gradio.app/plot-component-for-maps/
    candlestick_plot = gr.Plot().style()
    demo.queue().load(trading_plot, [], candlestick_plot, every=1)
    
    with gr.Row():
        with gr.Column():
            gr.Markdown("User Interactive panel")
            amount = gr.components.Textbox(value="", label="Amount", interactive=True)
            with gr.Row():
                buy_btn = gr.components.Button("Buy", label="Buy", interactive=True, inputs=[amount])
                sell_btn = gr.components.Button("Sell", label="Sell", interactive=True, inputs=[amount])
                hold_btn = gr.components.Button("Hold", label="Hold", interactive=True, inputs=[amount])

        with gr.Column():
            gr.Markdown("Trade bot history")

            # trade_bot_table = gr.Dataframe(df_data_train_viz)
            # demo.queue().load(update_table, inputs=None, outputs=trade_bot_table, every=1)
            # Show trade box history in a table or something
            # gr.components.Textbox(value="Some history? Need to decide how to show bot history", label="History", interactive=True)

demo.launch()