File size: 3,992 Bytes
6e4a9f8
a1b9452
 
6e4a9f8
45a55d4
6e4a9f8
 
2276894
a1b9452
6e4a9f8
2276894
a1b9452
6e4a9f8
 
 
 
a1b9452
6e4a9f8
 
 
 
 
e907a75
6e4a9f8
 
a1b9452
6e4a9f8
 
 
 
e907a75
 
6e4a9f8
a1b9452
6e4a9f8
45a55d4
6e4a9f8
e907a75
6e4a9f8
e907a75
6e4a9f8
e907a75
 
 
 
6e4a9f8
 
 
a1b9452
6e4a9f8
 
45a55d4
e907a75
 
a1b9452
6e4a9f8
 
e907a75
a1b9452
6e4a9f8
a1b9452
e907a75
2276894
a1b9452
6e4a9f8
 
a1b9452
 
6e4a9f8
2276894
 
 
a1b9452
6e4a9f8
2276894
a1b9452
6e4a9f8
a1b9452
 
 
 
 
6e4a9f8
a1b9452
6e4a9f8
 
a1b9452
 
 
6e4a9f8
a1b9452
 
6e4a9f8
2276894
a1b9452
 
6e4a9f8
a1b9452
62424e6
6e4a9f8
a1b9452
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import yfinance as yf
import numpy as np
import pandas as pd
import tensorflow as tf
from sklearn.preprocessing import MinMaxScaler
import gradio as gr
import matplotlib.pyplot as plt
import os

# Define stock tickers for the dropdown
tickers = ['AAPL', 'MSFT', 'GOOGL', 'TSLA', 'AMZN', 'META', 'NFLX', 'NVDA', 'INTC', 'IBM']

# Function to fetch stock data and make predictions
def stock_prediction_app(ticker, start_date, end_date):
    # Fetch historical stock data from Yahoo Finance
    stock_data = yf.download(ticker, start=start_date, end=end_date)
    
    # Check if data is fetched correctly
    if stock_data.empty:
        return "No data available for the selected date range.", None
    
    # Prepare the data for LSTM model
    df_close = stock_data[['Close', 'Open', 'High', 'Low', 'Volume']]
    scaler = MinMaxScaler(feature_range=(0, 1))
    scaled_data = scaler.fit_transform(df_close)

    # Create datasets for training the LSTM model
    def create_dataset(data, time_step=60):
        X_train, y_train = [], []
        for i in range(len(data)-time_step-1):
            X_train.append(data[i:(i+time_step), :])
            y_train.append(data[i + time_step, 0])  # Predicting the 'Close' price
        return np.array(X_train), np.array(y_train)
    
    X_train, y_train = create_dataset(scaled_data)

    # Reshape the data for LSTM [samples, time steps, features]
    X_train = X_train.reshape(X_train.shape[0], X_train.shape[1], X_train.shape[2])  # (samples, time steps, features)
    
    # Define LSTM model with dropout for regularization
    lstm_model = tf.keras.Sequential([
        tf.keras.layers.LSTM(100, return_sequences=True, input_shape=(X_train.shape[1], X_train.shape[2])),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.LSTM(100, return_sequences=False),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(25),
        tf.keras.layers.Dense(1)
    ])
    
    # Compile the model
    lstm_model.compile(optimizer='adam', loss='mean_squared_error')
    
    # Train the model with more epochs
    lstm_model.fit(X_train, y_train, batch_size=32, epochs=50, verbose=0)

    # Predict on the same data (just for demonstration)
    predictions = lstm_model.predict(X_train)
    predictions = scaler.inverse_transform(np.concatenate((predictions, np.zeros((predictions.shape[0], scaled_data.shape[1]-1))), axis=1))[:, 0]  # Convert back to original scale

    # Create a plot to show predictions
    plt.figure(figsize=(10, 5))
    plt.plot(df_close['Close'].values, label='Actual Stock Price', color='blue')
    plt.plot(predictions, label='Predicted Stock Price', color='orange')
    plt.title(f'{ticker} Stock Price Prediction')
    plt.xlabel('Days')
    plt.ylabel('Stock Price')
    plt.legend()
    
    # Save the plot to display in Gradio app
    plot_path = 'stock_prediction_plot.png'
    plt.savefig(plot_path)
    plt.close()  # Close the plot to prevent display issues in some environments

    # Return a message and the path to the saved plot
    return f"Prediction complete for {ticker} from {start_date} to {end_date}", plot_path

# Create the Gradio UI for the app
app = gr.Blocks()

with app:
    gr.Markdown("# Stock Buy/Sell Prediction App")
    
    # Dropdown for stock tickers
    ticker = gr.Dropdown(tickers, label="Select Stock Ticker")
    
    # Textboxes for manual date input
    start_date = gr.Textbox(label="Start Date (YYYY-MM-DD)")
    end_date = gr.Textbox(label="End Date (YYYY-MM-DD)")
    
    # Button to trigger the prediction
    predict_button = gr.Button("Predict")
    
    # Output fields for text and image
    output_text = gr.Textbox(label="Prediction Result", interactive=False)
    output_image = gr.Image(label="Stock Price Graph")
    
    # Set up button click event to run the prediction function
    predict_button.click(fn=stock_prediction_app, inputs=[ticker, start_date, end_date], outputs=[output_text, output_image])

# Launch the Gradio app
app.launch()