|
from shiny import App, ui, render
|
|
import requests
|
|
from bs4 import BeautifulSoup
|
|
import pandas as pd
|
|
import torch
|
|
from transformers import BertTokenizer, BertModel
|
|
import numpy as np
|
|
from sklearn.metrics.pairwise import cosine_similarity
|
|
|
|
|
|
url = "https://courses.analyticsvidhya.com/pages/all-free-courses"
|
|
response = requests.get(url)
|
|
soup = BeautifulSoup(response.content, 'html.parser')
|
|
|
|
courses = []
|
|
|
|
|
|
for course_card in soup.find_all('header', class_='course-card__img-container'):
|
|
img_tag = course_card.find('img', class_='course-card__img')
|
|
|
|
if img_tag:
|
|
title = img_tag.get('alt')
|
|
image_url = img_tag.get('src')
|
|
|
|
link_tag = course_card.find_previous('a')
|
|
if link_tag:
|
|
course_link = link_tag.get('href')
|
|
if not course_link.startswith('http'):
|
|
course_link = 'https://courses.analyticsvidhya.com' + course_link
|
|
|
|
courses.append({
|
|
'title': title,
|
|
'image_url': image_url,
|
|
'course_link': course_link
|
|
})
|
|
|
|
|
|
df = pd.DataFrame(courses)
|
|
|
|
|
|
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
|
model = BertModel.from_pretrained('bert-base-uncased')
|
|
|
|
|
|
def get_bert_embedding(text):
|
|
inputs = tokenizer(text, return_tensors='pt', truncation=True, padding=True)
|
|
with torch.no_grad():
|
|
outputs = model(**inputs)
|
|
return outputs.last_hidden_state.mean(dim=1).numpy()
|
|
|
|
|
|
df['embedding'] = df['title'].apply(lambda x: get_bert_embedding(x))
|
|
|
|
|
|
def search_courses(query):
|
|
query_embedding = get_bert_embedding(query)
|
|
course_embeddings = np.vstack(df['embedding'].values)
|
|
|
|
|
|
similarities = cosine_similarity(query_embedding, course_embeddings).flatten()
|
|
|
|
|
|
df['score'] = similarities
|
|
|
|
|
|
top_results = df.sort_values(by='score', ascending=False).head(10)
|
|
return top_results[['title', 'image_url', 'course_link', 'score']].to_dict(orient='records')
|
|
|
|
|
|
app_ui = ui.page_fluid(
|
|
ui.tags.style(
|
|
"""
|
|
@import url('https://fonts.googleapis.com/css2?family=Poppins:wght@300;500;700&display=swap');
|
|
|
|
body {
|
|
font-family: 'Poppins', sans-serif;
|
|
background-color: #f4f6f9;
|
|
}
|
|
|
|
.container {
|
|
padding: 20px;
|
|
}
|
|
|
|
h2 {
|
|
color: #ff6f61;
|
|
font-weight: 700;
|
|
text-align: center;
|
|
}
|
|
|
|
.result-container {
|
|
display: flex;
|
|
flex-wrap: wrap;
|
|
gap: 20px;
|
|
justify-content: center;
|
|
}
|
|
|
|
.course-card {
|
|
background-color: #ffffff;
|
|
border-radius: 12px;
|
|
box-shadow: 0 4px 10px rgba(0, 0, 0, 0.15);
|
|
overflow: hidden;
|
|
width: calc(50% - 10px);
|
|
transition: transform 0.3s, box-shadow 0.3s;
|
|
}
|
|
|
|
.course-card:hover {
|
|
transform: scale(1.05);
|
|
box-shadow: 0 6px 20px rgba(0, 0, 0, 0.2);
|
|
}
|
|
|
|
.course-image {
|
|
width: 100%;
|
|
height: 180px;
|
|
object-fit: cover;
|
|
border-top-left-radius: 12px;
|
|
border-top-right-radius: 12px;
|
|
}
|
|
|
|
.course-info {
|
|
padding: 15px;
|
|
}
|
|
|
|
.course-info h3 {
|
|
font-size: 20px;
|
|
color: #333;
|
|
margin-top: 0;
|
|
}
|
|
|
|
.course-info p {
|
|
color: #666;
|
|
font-size: 16px;
|
|
margin-bottom: 10px;
|
|
}
|
|
|
|
.course-link {
|
|
background-color: #ff6f61;
|
|
color: white;
|
|
padding: 8px 12px;
|
|
text-decoration: none;
|
|
border-radius: 6px;
|
|
font-size: 15px;
|
|
display: inline-block;
|
|
margin-top: 10px;
|
|
transition: background-color 0.2s;
|
|
}
|
|
|
|
.course-link:hover {
|
|
background-color: #e85a50;
|
|
}
|
|
|
|
.no-results {
|
|
text-align: center;
|
|
color: #888;
|
|
font-style: italic;
|
|
}
|
|
"""
|
|
),
|
|
ui.h2("Analytics Vidhya Smart Course Search"),
|
|
ui.input_text("query", "Enter your search query", placeholder="e.g., machine learning, data science, python"),
|
|
ui.output_text("search_info"),
|
|
ui.output_ui("results")
|
|
)
|
|
|
|
def server(input, output, session):
|
|
@output
|
|
@render.ui
|
|
def results():
|
|
if not input.query():
|
|
return ui.p("Enter a search query to get started!", class_="no-results")
|
|
|
|
|
|
query = input.query()
|
|
results = search_courses(query)
|
|
|
|
if results:
|
|
result_ui = []
|
|
for item in results:
|
|
course_title = item['title']
|
|
course_image = item['image_url']
|
|
course_link = item['course_link']
|
|
relevance_score = round(item['score'] * 100, 2)
|
|
|
|
|
|
result_ui.append(
|
|
ui.div(
|
|
ui.img(src=course_image, class_="course-image"),
|
|
ui.div(
|
|
ui.h3(course_title),
|
|
ui.p(f"Relevance: {relevance_score}%"),
|
|
ui.a("View Course", href=course_link, target="_blank", class_="course-link"),
|
|
class_="course-info"
|
|
),
|
|
class_="course-card"
|
|
)
|
|
)
|
|
return ui.div(*result_ui, class_="result-container")
|
|
else:
|
|
return ui.p("No results found.", class_="no-results")
|
|
|
|
@output
|
|
@render.text
|
|
def search_info():
|
|
return f"Results for '{input.query()}'" if input.query() else "Search for courses by typing a query above."
|
|
|
|
app = App(app_ui, server)
|
|
|