|
import gradio as gr |
|
from fastai.vision.all import * |
|
import skimage |
|
|
|
learn = load_learner('export.pkl') |
|
labels = learn.dls.vocab |
|
|
|
def predict(img): |
|
img = PILImage.create(img) |
|
pred, pred_idx, probs = learn.predict(img) |
|
return {labels[i]: float(probs[i]) for i in range(len(labels))} |
|
|
|
title = "Breast cancer detection with Deep Transfer Learning(ResNet18)." |
|
description = "<p style='text-align: center'><b>As a radiologist or oncologist, it is crucial to know what is wrong with a breast x-ray image.</b><br><b>Upload the breast X-ray image to know what is wrong with a patient's breast with or without implant. This product is from the findings of my (Team) published research paper: <a href='https://iopscience.iop.org/article/10.1088/2057-1976/ad3cdf' target='_blank' style='color: blue;'>read paper</a>. Learn more about me: <a href='https://www.linkedin.com/in/fosberg-addai-53a6991a7/' target='_blank' style='color: blue;'>Fosberg Addai</a></b></p>" |
|
article = "<p style='text-align: center'><b>Web app is built and managed by Addai Fosberg</b></p>" |
|
examples = ['img1.jpeg', 'img2.jpeg'] |
|
|
|
iface = gr.Interface( |
|
fn=predict, |
|
inputs=gr.Image(shape=(512, 512)), |
|
outputs=gr.Label(num_top_classes=3), |
|
title=title, |
|
description=description, |
|
article=article, |
|
examples=examples, |
|
enable_queue=True |
|
) |
|
|
|
iface.launch() |