File size: 15,713 Bytes
e4bac04
a6a0b43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4bac04
a6a0b43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4bac04
a6a0b43
e4bac04
a6a0b43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0fc3a1a
a6a0b43
 
 
804694d
 
a6a0b43
 
 
 
 
 
 
 
 
 
0fc3a1a
a6a0b43
 
 
a001ae3
a6a0b43
 
 
 
 
 
 
 
 
a001ae3
a6a0b43
 
 
 
 
f98760e
a6a0b43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f98760e
a6a0b43
 
f98760e
a6a0b43
 
 
 
f98760e
a6a0b43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f98760e
a6a0b43
f98760e
a6a0b43
8c4611d
a6a0b43
 
 
8c4611d
a6a0b43
 
 
 
5c47ebc
a6a0b43
 
 
8c4611d
a6a0b43
 
8c4611d
a6a0b43
 
8c4611d
a6a0b43
 
 
 
8c4611d
a6a0b43
 
8c4611d
a6a0b43
 
 
8c4611d
a6a0b43
8c4611d
a6a0b43
 
 
8c4611d
a6a0b43
8c4611d
a6a0b43
 
 
 
 
 
 
 
 
 
 
 
8c4611d
a6a0b43
 
 
 
 
 
 
 
8c4611d
a6a0b43
 
 
 
 
 
f98760e
a6a0b43
 
499ffe6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345

import gradio as gr
import edge_tts
import asyncio
import tempfile
import numpy as np
import soxr
from pydub import AudioSegment
import torch
import sentencepiece as spm
import onnxruntime as ort
from huggingface_hub import hf_hub_download, InferenceClient
import requests
from bs4 import BeautifulSoup
import urllib
import random

theme = gr.themes.Soft(
    primary_hue="blue",
    secondary_hue="orange")


# List of user agents to choose from for requests
_useragent_list = [
    'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:66.0) Gecko/20100101 Firefox/66.0',
    'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
    'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
    'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/109.0.0.0 Safari/537.36',
    'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
    'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36 Edg/111.0.1661.62',
    'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0'
]

def get_useragent():
    """Returns a random user agent from the list."""
    return random.choice(_useragent_list)

def extract_text_from_webpage(html_content):
    """Extracts visible text from HTML content using BeautifulSoup."""
    soup = BeautifulSoup(html_content, "html.parser")
    # Remove unwanted tags
    for tag in soup(["script", "style", "header", "footer", "nav"]):
        tag.extract()
    # Get the remaining visible text
    visible_text = soup.get_text(strip=True)
    return visible_text

def search(term, num_results=1, lang="en", advanced=True, sleep_interval=0, timeout=5, safe="active", ssl_verify=None):
    """Performs a Google search and returns the results."""
    escaped_term = urllib.parse.quote_plus(term)
    start = 0
    all_results = []

    # Fetch results in batches
    while start < num_results:
        resp = requests.get(
            url="https://www.google.com/search",
            headers={"User-Agent": get_useragent()}, # Set random user agent
            params={
                "q": term,
                "num": num_results - start, # Number of results to fetch in this batch
                "hl": lang,
                "start": start,
                "safe": safe,
            },
            timeout=timeout,
            verify=ssl_verify,
        )
        resp.raise_for_status() # Raise an exception if request fails

        soup = BeautifulSoup(resp.text, "html.parser")
        result_block = soup.find_all("div", attrs={"class": "g"})

        # If no results, continue to the next batch
        if not result_block:
            start += 1
            continue

        # Extract link and text from each result
        for result in result_block:
            link = result.find("a", href=True)
            if link:
                link = link["href"]
                try:
                    # Fetch webpage content
                    webpage = requests.get(link, headers={"User-Agent": get_useragent()})
                    webpage.raise_for_status()
                    # Extract visible text from webpage
                    visible_text = extract_text_from_webpage(webpage.text)
                    all_results.append({"link": link, "text": visible_text})
                except requests.exceptions.RequestException as e:
                    # Handle errors fetching or processing webpage
                    print(f"Error fetching or processing {link}: {e}")
                    all_results.append({"link": link, "text": None})
            else:
                all_results.append({"link": None, "text": None})

        start += len(result_block) # Update starting index for next batch

    return all_results

# Speech Recognition Model Configuration
model_name = "neongeckocom/stt_en_citrinet_512_gamma_0_25"
sample_rate = 16000

# Download preprocessor, encoder and tokenizer
preprocessor = torch.jit.load(hf_hub_download(model_name, "preprocessor.ts", subfolder="onnx"))
encoder = ort.InferenceSession(hf_hub_download(model_name, "model.onnx", subfolder="onnx"))
tokenizer = spm.SentencePieceProcessor(hf_hub_download(model_name, "tokenizer.spm", subfolder="onnx"))

# Mistral Model Configuration
client1 = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
system_instructions1 = "<s>[SYSTEM] Answer as OpenGPT 4o, Made by 'KingNish', Keep conversation very short, clear, friendly and concise. The text provided is a request for a specific type of response from you, the virtual assistant. The request asks you to provide friendly responses. The expectation is that I will avoid introductions and start answering the query directly, elaborating on all aspects of the request. As an AI-powered assistant, your task is to generate responses that appear as if they are created by the user and not an AI-powered assistant. [USER]"

def resample(audio_fp32, sr):
    return soxr.resample(audio_fp32, sr, sample_rate)

def to_float32(audio_buffer):
    return np.divide(audio_buffer, np.iinfo(audio_buffer.dtype).max, dtype=np.float32)

def transcribe(audio_path):
    audio_file = AudioSegment.from_file(audio_path)
    sr = audio_file.frame_rate
    audio_buffer = np.array(audio_file.get_array_of_samples())

    audio_fp32 = to_float32(audio_buffer)
    audio_16k = resample(audio_fp32, sr)

    input_signal = torch.tensor(audio_16k).unsqueeze(0)
    length = torch.tensor(len(audio_16k)).unsqueeze(0)
    processed_signal, _ = preprocessor.forward(input_signal=input_signal, length=length)
    
    logits = encoder.run(None, {'audio_signal': processed_signal.numpy(), 'length': length.numpy()})[0][0]

    blank_id = tokenizer.vocab_size()
    decoded_prediction = [p for p in logits.argmax(axis=1).tolist() if p != blank_id]
    text = tokenizer.decode_ids(decoded_prediction)

    return text

def model(text, web_search):
    if web_search is True:
        """Performs a web search, feeds the results to a language model, and returns the answer."""
        web_results = search(text)
        web2 = ' '.join([f"Link: {res['link']}\nText: {res['text']}\n\n" for res in web_results])
        formatted_prompt = system_instructions1 + text + "[WEB]" + str(web2) + "[OpenGPT 4o]"
        stream = client1.text_generation(formatted_prompt, max_new_tokens=512, stream=True, details=True, return_full_text=False)
        return "".join([response.token.text for response in stream if response.token.text != "</s>"])
    else:
        formatted_prompt = system_instructions1 + text + "[OpenGPT 4o]"
        stream = client1.text_generation(formatted_prompt, max_new_tokens=512, stream=True, details=True, return_full_text=False)
        return "".join([response.token.text for response in stream if response.token.text != "</s>"])

async def respond(audio, web_search):
    user = transcribe(audio)
    reply = model(user, web_search)
    communicate = edge_tts.Communicate(reply)
    with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
        tmp_path = tmp_file.name
        await communicate.save(tmp_path)
    return tmp_path

with gr.Blocks(theme=theme) as demo:    
    with gr.Row():
        web_search = gr.Checkbox(label="Web Search", value=False)
        input = gr.Audio(label="User Input", sources="microphone", type="filepath")
        output = gr.Audio(label="AI", autoplay=True)
        gr.Interface(fn=respond, inputs=[input, web_search], outputs=[output], live=True)

if __name__ == "__main__":
    demo.queue(max_size=200).launch()


# import gradio as gr
# import edge_tts
# import asyncio
# import tempfile
# import numpy as np
# import soxr
# from pydub import AudioSegment
# import torch
# import sentencepiece as spm
# import onnxruntime as ort
# from huggingface_hub import hf_hub_download, InferenceClient
# import requests
# from bs4 import BeautifulSoup
# import urllib
# import random

# theme = gr.themes.Soft(
#     primary_hue="blue",
#     secondary_hue="orange")


# # List of user agents to choose from for requests
# _useragent_list = [
#     'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:66.0) Gecko/20100101 Firefox/66.0',
#     'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
#     'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
#     'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/109.0.0.0 Safari/537.36',
#     'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
#     'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36 Edg/111.0.1661.62',
#     'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0'
# ]

# def get_useragent():
#     """Returns a random user agent from the list."""
#     return random.choice(_useragent_list)

# def extract_text_from_webpage(html_content):
#     """Extracts visible text from HTML content using BeautifulSoup."""
#     soup = BeautifulSoup(html_content, "html.parser")
#     # Remove unwanted tags
#     for tag in soup(["script", "style", "header", "footer", "nav"]):
#         tag.extract()
#     # Get the remaining visible text
#     visible_text = soup.get_text(strip=True)
#     return visible_text

# def search(term, num_results=1, lang="en", advanced=True, sleep_interval=0, timeout=5, safe="active", ssl_verify=None):
#     """Performs a Google search and returns the results."""
#     escaped_term = urllib.parse.quote_plus(term)
#     start = 0
#     all_results = []

#     # Fetch results in batches
#     while start < num_results:
#         resp = requests.get(
#             url="https://www.google.com/search",
#             headers={"User-Agent": get_useragent()}, # Set random user agent
#             params={
#                 "q": term,
#                 "num": num_results - start, # Number of results to fetch in this batch
#                 "hl": lang,
#                 "start": start,
#                 "safe": safe,
#             },
#             timeout=timeout,
#             verify=ssl_verify,
#         )
#         resp.raise_for_status() # Raise an exception if request fails

#         soup = BeautifulSoup(resp.text, "html.parser")
#         result_block = soup.find_all("div", attrs={"class": "g"})

#         # If no results, continue to the next batch
#         if not result_block:
#             start += 1
#             continue

#         # Extract link and text from each result
#         for result in result_block:
#             link = result.find("a", href=True)
#             if link:
#                 link = link["href"]
#                 try:
#                     # Fetch webpage content
#                     webpage = requests.get(link, headers={"User-Agent": get_useragent()})
#                     webpage.raise_for_status()
#                     # Extract visible text from webpage
#                     visible_text = extract_text_from_webpage(webpage.text)
#                     all_results.append({"link": link, "text": visible_text})
#                 except requests.exceptions.RequestException as e:
#                     # Handle errors fetching or processing webpage
#                     print(f"Error fetching or processing {link}: {e}")
#                     all_results.append({"link": link, "text": None})
#             else:
#                 all_results.append({"link": None, "text": None})

#         start += len(result_block) # Update starting index for next batch

#     return all_results

# # Speech Recognition Model Configuration
# model_name = "neongeckocom/stt_en_citrinet_512_gamma_0_25"
# sample_rate = 16000

# # Download preprocessor, encoder and tokenizer
# preprocessor = torch.jit.load(hf_hub_download(model_name, "preprocessor.ts", subfolder="onnx"))
# encoder = ort.InferenceSession(hf_hub_download(model_name, "model.onnx", subfolder="onnx"))
# tokenizer = spm.SentencePieceProcessor(hf_hub_download(model_name, "tokenizer.spm", subfolder="onnx"))

# # Mistral Model Configuration
# client1 = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
# system_instructions1 = "<s>[SYSTEM] Answer as OpenGPT 4o, Made by 'KingNish', Keep conversation very short, clear, friendly and concise. The text provided is a request for a specific type of response from you, the virtual assistant. The request asks you to provide friendly responses. The expectation is that I will avoid introductions and start answering the query directly, elaborating on all aspects of the request. As an AI-powered assistant, your task is to generate responses that appear as if they are created by the user and not an AI-powered assistant. [USER]"

# def resample(audio_fp32, sr):
#     return soxr.resample(audio_fp32, sr, sample_rate)

# def to_float32(audio_buffer):
#     return np.divide(audio_buffer, np.iinfo(audio_buffer.dtype).max, dtype=np.float32)

# def transcribe(audio_path):
#     audio_file = AudioSegment.from_file(audio_path)
#     sr = audio_file.frame_rate
#     audio_buffer = np.array(audio_file.get_array_of_samples())

#     audio_fp32 = to_float32(audio_buffer)
#     audio_16k = resample(audio_fp32, sr)

#     input_signal = torch.tensor(audio_16k).unsqueeze(0)
#     length = torch.tensor(len(audio_16k)).unsqueeze(0)
#     processed_signal, _ = preprocessor.forward(input_signal=input_signal, length=length)
    
#     logits = encoder.run(None, {'audio_signal': processed_signal.numpy(), 'length': length.numpy()})[0][0]

#     blank_id = tokenizer.vocab_size()
#     decoded_prediction = [p for p in logits.argmax(axis=1).tolist() if p != blank_id]
#     text = tokenizer.decode_ids(decoded_prediction)

#     return text

# def model(text, web_search):
#     if web_search is True:
#         """Performs a web search, feeds the results to a language model, and returns the answer."""
#         web_results = search(text)
#         web2 = ' '.join([f"Link: {res['link']}\nText: {res['text']}\n\n" for res in web_results])
#         formatted_prompt = system_instructions1 + text + "[WEB]" + str(web2) + "[OpenGPT 4o]"
#         stream = client1.text_generation(formatted_prompt, max_new_tokens=512, stream=True, details=True, return_full_text=False)
#         return "".join([response.token.text for response in stream if response.token.text != "</s>"])
#     else:
#         formatted_prompt = system_instructions1 + text + "[OpenGPT 4o]"
#         stream = client1.text_generation(formatted_prompt, max_new_tokens=512, stream=True, details=True, return_full_text=False)
#         return "".join([response.token.text for response in stream if response.token.text != "</s>"])

# async def respond(audio, web_search):
#     user = transcribe(audio)
#     reply = model(user, web_search)
#     communicate = edge_tts.Communicate(reply)
#     with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
#         tmp_path = tmp_file.name
#         await communicate.save(tmp_path)
#     return tmp_path

# with gr.Blocks(theme=theme) as demo:    
#     with gr.Row():
#         web_search = gr.Checkbox(label="Web Search", value=False)
#         input = gr.Audio(label="User Input", sources="microphone", type="filepath")
#         output = gr.Audio(label="AI", autoplay=True)
#         gr.Interface(fn=respond, inputs=[input, web_search], outputs=[output], live=True)

# if __name__ == "__main__":
#     demo.queue(max_size=200).launch()