File size: 11,447 Bytes
e4bac04 a6a0b43 47263f5 a6a0b43 434ed70 a6a0b43 434ed70 07ecedb ce3e18b a6a0b43 434ed70 a6a0b43 0fc3a1a a6a0b43 804694d a6a0b43 0fc3a1a a6a0b43 a001ae3 a6a0b43 a001ae3 a6a0b43 f98760e a6a0b43 f98760e a6a0b43 f98760e a6a0b43 f98760e a6a0b43 f98760e a6a0b43 f98760e a6a0b43 8c4611d a6a0b43 8c4611d a6a0b43 5c47ebc a6a0b43 8c4611d a6a0b43 8c4611d a6a0b43 8c4611d a6a0b43 8c4611d a6a0b43 8c4611d a6a0b43 8c4611d a6a0b43 8c4611d a6a0b43 8c4611d a6a0b43 8c4611d a6a0b43 8c4611d a6a0b43 8c4611d a6a0b43 f98760e a6a0b43 499ffe6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
import gradio as gr
import edge_tts
import tempfile
import numpy as np
import soxr
from pydub import AudioSegment
import torch
import sentencepiece as spm
import onnxruntime as ort
from huggingface_hub import hf_hub_download, InferenceClient
theme = gr.themes.Soft(
primary_hue="blue",
secondary_hue="orange")
# Speech Recognition Model Configuration
model_name = "neongeckocom/stt_en_citrinet_512_gamma_0_25"
sample_rate = 16000
# Download preprocessor, encoder and tokenizer
preprocessor = torch.jit.load(hf_hub_download(model_name, "preprocessor.ts", subfolder="onnx"))
encoder = ort.InferenceSession(hf_hub_download(model_name, "model.onnx", subfolder="onnx"))
tokenizer = spm.SentencePieceProcessor(hf_hub_download(model_name, "tokenizer.spm", subfolder="onnx"))
# Mistral Model Configuration
client1 = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
system_instructions1 = "<s>[SYSTEM] Answer as OpenGPT 4o, Made by 'Mazen', Keep conversation very short, clear, friendly and concise. The text provided is a request for a specific type of response from you, the virtual assistant. The request asks you to provide Funny responses. The expectation is that I will avoid introductions and start answering the query directly, elaborating on all aspects of the request. As an AI-powered assistant, your task is to generate responses that appear as if they are created by the user and not an AI-powered assistant. [USER]"
def resample(audio_fp32, sr):
return soxr.resample(audio_fp32, sr, sample_rate)
def to_float32(audio_buffer):
return np.divide(audio_buffer, np.iinfo(audio_buffer.dtype).max, dtype=np.float32)
async def transcribe(audio_path):
audio_file = AudioSegment.from_file(audio_path)
sr = audio_file.frame_rate
audio_buffer = np.array(audio_file.get_array_of_samples())
audio_fp32 = to_float32(audio_buffer)
audio_16k = resample(audio_fp32, sr)
input_signal = torch.tensor(audio_16k).unsqueeze(0)
length = torch.tensor(len(audio_16k)).unsqueeze(0)
processed_signal, _ = preprocessor.forward(input_signal=input_signal, length=length)
logits = encoder.run(None, {'audio_signal': processed_signal.numpy(), 'length': length.numpy()})[0][0]
blank_id = tokenizer.vocab_size()
decoded_prediction = [p for p in logits.argmax(axis=1).tolist() if p != blank_id]
text = tokenizer.decode_ids(decoded_prediction)
return text
async def model(text):
formatted_prompt = system_instructions1 + text + "[OpenGPT 4o]"
stream = client1.text_generation(formatted_prompt, max_new_tokens=512, stream=True, details=True, return_full_text=False)
return "".join([response.token.text for response in stream if response.token.text != "</s>"])
async def respond(audio):
user = await transcribe(audio)
reply = await model(user)
communicate = edge_tts.Communicate(reply, voice="en-US-JennyNeural") # Example voice
##communicate = edge_tts.Communicate(reply)
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
tmp_path = tmp_file.name
await communicate.save(tmp_path)
return tmp_path
with gr.Blocks(theme=theme) as demo:
input = gr.Audio(label="User Input", sources="microphone", type="filepath")
output = gr.Audio(label="AI", autoplay=True)
gr.Interface(fn=respond, inputs=[input], outputs=[output], live=True)
if __name__ == "__main__":
demo.queue(max_size=200).launch()
# import gradio as gr
# import edge_tts
# import asyncio
# import tempfile
# import numpy as np
# import soxr
# from pydub import AudioSegment
# import torch
# import sentencepiece as spm
# import onnxruntime as ort
# from huggingface_hub import hf_hub_download, InferenceClient
# import requests
# from bs4 import BeautifulSoup
# import urllib
# import random
# theme = gr.themes.Soft(
# primary_hue="blue",
# secondary_hue="orange")
# # List of user agents to choose from for requests
# _useragent_list = [
# 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:66.0) Gecko/20100101 Firefox/66.0',
# 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
# 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
# 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/109.0.0.0 Safari/537.36',
# 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
# 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36 Edg/111.0.1661.62',
# 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0'
# ]
# def get_useragent():
# """Returns a random user agent from the list."""
# return random.choice(_useragent_list)
# def extract_text_from_webpage(html_content):
# """Extracts visible text from HTML content using BeautifulSoup."""
# soup = BeautifulSoup(html_content, "html.parser")
# # Remove unwanted tags
# for tag in soup(["script", "style", "header", "footer", "nav"]):
# tag.extract()
# # Get the remaining visible text
# visible_text = soup.get_text(strip=True)
# return visible_text
# def search(term, num_results=1, lang="en", advanced=True, sleep_interval=0, timeout=5, safe="active", ssl_verify=None):
# """Performs a Google search and returns the results."""
# escaped_term = urllib.parse.quote_plus(term)
# start = 0
# all_results = []
# # Fetch results in batches
# while start < num_results:
# resp = requests.get(
# url="https://www.google.com/search",
# headers={"User-Agent": get_useragent()}, # Set random user agent
# params={
# "q": term,
# "num": num_results - start, # Number of results to fetch in this batch
# "hl": lang,
# "start": start,
# "safe": safe,
# },
# timeout=timeout,
# verify=ssl_verify,
# )
# resp.raise_for_status() # Raise an exception if request fails
# soup = BeautifulSoup(resp.text, "html.parser")
# result_block = soup.find_all("div", attrs={"class": "g"})
# # If no results, continue to the next batch
# if not result_block:
# start += 1
# continue
# # Extract link and text from each result
# for result in result_block:
# link = result.find("a", href=True)
# if link:
# link = link["href"]
# try:
# # Fetch webpage content
# webpage = requests.get(link, headers={"User-Agent": get_useragent()})
# webpage.raise_for_status()
# # Extract visible text from webpage
# visible_text = extract_text_from_webpage(webpage.text)
# all_results.append({"link": link, "text": visible_text})
# except requests.exceptions.RequestException as e:
# # Handle errors fetching or processing webpage
# print(f"Error fetching or processing {link}: {e}")
# all_results.append({"link": link, "text": None})
# else:
# all_results.append({"link": None, "text": None})
# start += len(result_block) # Update starting index for next batch
# return all_results
# # Speech Recognition Model Configuration
# model_name = "neongeckocom/stt_en_citrinet_512_gamma_0_25"
# sample_rate = 16000
# # Download preprocessor, encoder and tokenizer
# preprocessor = torch.jit.load(hf_hub_download(model_name, "preprocessor.ts", subfolder="onnx"))
# encoder = ort.InferenceSession(hf_hub_download(model_name, "model.onnx", subfolder="onnx"))
# tokenizer = spm.SentencePieceProcessor(hf_hub_download(model_name, "tokenizer.spm", subfolder="onnx"))
# # Mistral Model Configuration
# client1 = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
# system_instructions1 = "<s>[SYSTEM] Answer as OpenGPT 4o, Made by 'KingNish', Keep conversation very short, clear, friendly and concise. The text provided is a request for a specific type of response from you, the virtual assistant. The request asks you to provide friendly responses. The expectation is that I will avoid introductions and start answering the query directly, elaborating on all aspects of the request. As an AI-powered assistant, your task is to generate responses that appear as if they are created by the user and not an AI-powered assistant. [USER]"
# def resample(audio_fp32, sr):
# return soxr.resample(audio_fp32, sr, sample_rate)
# def to_float32(audio_buffer):
# return np.divide(audio_buffer, np.iinfo(audio_buffer.dtype).max, dtype=np.float32)
# def transcribe(audio_path):
# audio_file = AudioSegment.from_file(audio_path)
# sr = audio_file.frame_rate
# audio_buffer = np.array(audio_file.get_array_of_samples())
# audio_fp32 = to_float32(audio_buffer)
# audio_16k = resample(audio_fp32, sr)
# input_signal = torch.tensor(audio_16k).unsqueeze(0)
# length = torch.tensor(len(audio_16k)).unsqueeze(0)
# processed_signal, _ = preprocessor.forward(input_signal=input_signal, length=length)
# logits = encoder.run(None, {'audio_signal': processed_signal.numpy(), 'length': length.numpy()})[0][0]
# blank_id = tokenizer.vocab_size()
# decoded_prediction = [p for p in logits.argmax(axis=1).tolist() if p != blank_id]
# text = tokenizer.decode_ids(decoded_prediction)
# return text
# def model(text, web_search):
# if web_search is True:
# """Performs a web search, feeds the results to a language model, and returns the answer."""
# web_results = search(text)
# web2 = ' '.join([f"Link: {res['link']}\nText: {res['text']}\n\n" for res in web_results])
# formatted_prompt = system_instructions1 + text + "[WEB]" + str(web2) + "[OpenGPT 4o]"
# stream = client1.text_generation(formatted_prompt, max_new_tokens=512, stream=True, details=True, return_full_text=False)
# return "".join([response.token.text for response in stream if response.token.text != "</s>"])
# else:
# formatted_prompt = system_instructions1 + text + "[OpenGPT 4o]"
# stream = client1.text_generation(formatted_prompt, max_new_tokens=512, stream=True, details=True, return_full_text=False)
# return "".join([response.token.text for response in stream if response.token.text != "</s>"])
# async def respond(audio, web_search):
# user = transcribe(audio)
# reply = model(user, web_search)
# communicate = edge_tts.Communicate(reply)
# with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
# tmp_path = tmp_file.name
# await communicate.save(tmp_path)
# return tmp_path
# with gr.Blocks(theme=theme) as demo:
# with gr.Row():
# web_search = gr.Checkbox(label="Web Search", value=False)
# input = gr.Audio(label="User Input", sources="microphone", type="filepath")
# output = gr.Audio(label="AI", autoplay=True)
# gr.Interface(fn=respond, inputs=[input, web_search], outputs=[output], live=True)
# if __name__ == "__main__":
# demo.queue(max_size=200).launch()
|