File size: 1,998 Bytes
98c0f54 18332e8 2292b28 bbeaa3a 09ca2da 18332e8 ecd8fcb 09ca2da 2bb61b8 c4d5545 2bb61b8 12b0ed7 95d05cb 8cb1867 b246175 18332e8 98c0f54 18332e8 b246175 95d05cb 09ca2da 8b24c55 09ca2da 95d05cb 367a8a1 95d05cb 12b0ed7 fcf7672 09ca2da f4067be bcb2ab6 12b0ed7 2292b28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
import gradio as gr
from transformers import pipeline
from pptx import Presentation # Import the Presentation class
import re
# Create a text classification pipeline
classifier = pipeline("text-classification", model="Ahmed235/roberta_classification", tokenizer="Ahmed235/roberta_classification")
summarizer = pipeline("summarization", model="Falconsai/text_summarization")
def extract_text_from_pptx(file_path):
presentation = Presentation(file_path)
text = []
for slide_number, slide in enumerate(presentation.slides, start=1):
for shape in slide.shapes:
if hasattr(shape, "text"):
text.append(shape.text)
return "\n".join(text)
def predict_pptx_content(file_path):
try:
extracted_text = extract_text_from_pptx(file_path)
cleaned_text = re.sub(r'\s+', ' ', extracted_text)
# Perform inference using the pipeline
result = classifier(extracted_text)
predicted_label = result[0]['label']
predicted_probability = result[0]['score']
summary = summarizer(extracted_text, max_length=80, min_length=30, do_sample=False)[0]['summary_text']
prediction = {
"Summary": summary,
"Evaluation": f"Evaluate the topic according to {predicted_label} is: {predicted_probability}",
"Predicted Label": predicted_label,
}
return prediction
except Exception as e:
# Log the error details
print(f"Error in predict_pptx_content: {e}")
return {"error": str(e)}
# Define the Gradio interface
iface = gr.Interface(
fn=predict_pptx_content,
inputs=gr.File(type="filepath", label="Upload PowerPoint (.pptx) file"),
outputs=[gr.Textbox("Summary"), gr.Textbox("Evaluation"), gr.Textbox("Predicted Label")],
live=False, # Change to True for one-time analysis
title="<h1 style='color: lightgreen; text-align: center;'>HackTalk Analyzer</h1>",
)
# Deploy the Gradio interface
iface.launch(share=True)
|