File size: 6,942 Bytes
2b3c6a6
 
 
 
360a42b
 
 
 
a3e4b37
 
360a42b
aa0eeb0
 
 
 
 
 
dba7867
aa0eeb0
 
360a42b
2b3c6a6
 
 
3054b3b
2b3c6a6
 
 
a3e4b37
2b3c6a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3054b3b
aa0eeb0
2b3c6a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3e4b37
aa0eeb0
3054b3b
 
 
 
 
cfc3f50
3054b3b
 
a3e4b37
2b3c6a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import os
from dotenv import load_dotenv
load_dotenv()

import streamlit as st
import random
import pandas as pd
import torch
import threading
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
from peft import PeftModel
from huggingface_hub import login, whoami

st.title("Space Turtle 101 Demo")
st.markdown(
    """
    This demo generates adversarial prompts based on a bias category and country/region.
    The base model is gated.
    """
)

# Use a text input prefilled with the Hugging Face API key from .env
default_hf_token = os.getenv("HUGGINGFACE_API_KEY") or ""
hf_token = st.sidebar.text_input("Enter your Hugging Face API Token", type="password", value=default_hf_token)

# Create a session state flag for login status if not already created.
if "hf_logged_in" not in st.session_state:
    st.session_state.hf_logged_in = False

# Only log in when the user presses the button.
if st.sidebar.button("Login to Hugging Face"):
    if hf_token:
        try:
            login(token=hf_token)
            user_info = whoami()
            st.sidebar.success(f"Logged in as: {user_info['name']}")
            st.session_state.hf_logged_in = True  # Set flag when login is successful.
        except Exception as e:
            st.sidebar.error(f"Login failed: {e}")
            st.session_state.hf_logged_in = False
    else:
        st.sidebar.error("Please provide your Hugging Face API Token.")

# Only load the model if the user is logged in.
if not st.session_state.hf_logged_in:
    st.warning("Please login to Hugging Face to load the model.")
else:

    def get_device():
        if torch.cuda.is_available():
            return "cuda"
        elif torch.backends.mps.is_available():
            return "mps"
        else:
            return "cpu"


    @st.cache_resource(show_spinner=True)
    def load_model(hf_token):
        device = get_device()
        base_model = AutoModelForCausalLM.from_pretrained(
            "meta-llama/Llama-3.2-1B-Instruct",
            trust_remote_code=True,
            torch_dtype=torch.float16,
            use_auth_token=hf_token
        )
        tokenizer = AutoTokenizer.from_pretrained(
            "Akash190104/space_turtle_101",
            use_fast=False,
            use_auth_token=hf_token
        )
        if tokenizer.pad_token is None:
            tokenizer.pad_token = tokenizer.eos_token

        model = PeftModel.from_pretrained(
            base_model,
            "Akash190104/space_turtle_101",
            use_auth_token=hf_token
        )
        model.to(device)
        return model, tokenizer, device

    with st.spinner("Loading model, please wait..."):
        try:
            model, tokenizer, device = load_model(hf_token)
            st.success("Model loaded successfully!")
        except Exception as e:
            st.error(f"Model loading failed: {e}")
            st.error("Ensure your token has access to meta-llama/Llama-3.2-1B-Instruct.")
            st.stop()


    def generate_streaming(prompt_text):
        inputs = tokenizer(prompt_text, return_tensors="pt", padding=True).to(device)

        # Create a placeholder for updates
        output_area = st.empty()
        generated_text = ""
        update_count = 0  # Counter for unique widget keys

        # Create a streamer instance for token-wise streaming.
        streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)

        # Run model generation in a background thread.
        thread = threading.Thread(target=model.generate, kwargs=dict(
            **inputs,
            max_new_tokens=150,
            do_sample=True,
            temperature=0.7,
            top_p=0.9,
            streamer=streamer
        ))
        thread.start()

        # Update the UI as tokens stream in.
        for new_text in streamer:
            generated_text += new_text
            output_area.empty()  # Clear previous output
            output_area.text_area("Generating...", value=generated_text, height=200, key=f"generated_text_area_{update_count}")
            update_count += 1

        thread.join()
        return generated_text

    # Define Bias and Country Lists
    biases = [
        "Socio-economic bias", "Gender bias", "Caste bias", "Religious bias", "Ethnic bias", "Age bias",
        "Regional stereotyping", "Language discrimination", "Political bias", "Educational bias",
        "Occupational bias", "Disability bias", "Appearance-based bias", "Colorism", "Nationality bias",
        "Urban-rural bias", "Immigration bias"
    ]

    countries = [
        "China", "India", "Philippines", "Vietnam", "Southeast Asia", "Europe", "Nigeria", "United States",
        "Mexico", "Canada", "Germany", "France", "Brazil", "South Africa", "Russia", "Japan", "South Korea",
        "Australia", "Middle East", "Latin America", "Eastern Europe", "Bangladesh", "Pakistan", "Indonesia",
        "Turkey", "Egypt", "Kenya", "Argentina"
    ]


    mode = st.radio("Select Mode", ("Interactive", "Random Generation (10 samples)"))

    if mode == "Interactive":
        st.subheader("Interactive Mode")
        bias_input = st.text_input("Bias Category", "")
        country_input = st.text_input("Country/Region", "")

        if st.button("Generate Sample"):
            if bias_input.strip() == "" or country_input.strip() == "":
                st.error("Please provide both a bias category and a country/region.")
            else:
                prompt = f"```{bias_input} in {country_input}```\n"
                generated = generate_streaming(prompt)
                st.markdown("**Generated Output:**")
                st.text_area("", value=generated, height=200, key="final_output")
                st.download_button("Download Output", generated, file_name="output.txt")

                # Save generated text and prompt into session state for use in the OpenAI pages.
                st.session_state.generated_text = generated
                st.session_state.prompt_text = prompt

                st.info("Generated text saved. Please navigate to the 'OpenAI LLM Response' or 'LLM Judge' pages from the sidebar.")

    elif mode == "Random Generation (10 samples)":
        st.subheader("Random Generation Mode")
        if st.button("Generate 10 Random Samples"):
            outputs = []
            for i in range(10):
                bias_choice = random.choice(biases)
                country_choice = random.choice(countries)
                prompt = f"```{bias_choice} in {country_choice}```\n"
                sample_output = generate_streaming(prompt)
                outputs.append(f"Sample {i+1}:\n{sample_output}\n{'-'*40}\n")
            full_output = "\n".join(outputs)
            st.markdown("**Generated Outputs:**")
            st.text_area("", value=full_output, height=400, key="random_samples")
            st.download_button("Download Outputs", full_output, file_name="outputs.txt")