File size: 8,209 Bytes
53bf50a
a0ade0a
 
2a3a970
a0ade0a
 
460a080
a0ade0a
 
 
e8a0f17
53bf50a
2a3a970
036e563
75c27f0
bf036e1
e8a0f17
036e563
 
 
b1dcc65
036e563
 
b1dcc65
d0f20ab
036e563
b1dcc65
bf6da96
 
 
6b0ab1a
 
 
 
 
 
 
 
bf6da96
 
e9d9124
a0ade0a
8cb52d1
 
2bf0a50
 
 
 
2a3a970
a0ade0a
2a3a970
 
 
6b0ab1a
 
 
 
 
 
 
 
 
 
9d8d3cc
5ba216a
6b0ab1a
 
 
9d8d3cc
5ba216a
6b0ab1a
 
9d8d3cc
 
6f0c78d
2a3a970
745604f
a0ade0a
886193f
 
 
a9c9e52
9d8d3cc
 
 
 
 
 
 
 
a9c9e52
5ba216a
a9c9e52
b49c174
 
 
 
 
4b76708
2461e4f
b1dcc65
7031e38
f56b9d8
 
 
 
 
8793006
7031e38
ccbf9e7
8793006
929679c
8793006
443d088
929679c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d8d3cc
929679c
8793006
929679c
 
 
 
 
8793006
5e6d454
929679c
5e6d454
8793006
929679c
8793006
ccbf9e7
5e6d454
 
 
8793006
5e6d454
 
 
 
 
8793006
5e6d454
b7c9c79
5e6d454
 
 
 
745604f
5e6d454
cd8444d
d79b3e8
3a9b2f3
 
 
 
9352ec1
 
a0ade0a
9352ec1
a0ade0a
 
 
 
 
 
 
 
 
 
 
 
b779906
5e6d454
9352ec1
a0ade0a
 
 
 
9352ec1
5a5168a
b1dcc65
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
from __future__ import annotations
from typing import Iterable, List, Dict, Tuple

import gradio as gr
from gradio.themes.base import Base
from gradio.themes.soft import Soft
from gradio.themes.monochrome import Monochrome
from gradio.themes.default import Default
from gradio.themes.utils import colors, fonts, sizes

import spaces
import torch
import os
import io
import re
import colorsys

import numpy as np

from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModelForTokenClassification, pipeline

import matplotlib.pyplot as plt
import plotly.graph_objects as go
from wordcloud import WordCloud
from PIL import Image


def hex_to_rgb(hex_color: str) -> tuple[int, int, int]:
    hex_color = hex_color.lstrip('#')
    return tuple(int(hex_color[i:i+2], 16) for i in (0, 2, 4))

def rgb_to_hex(rgb_color: tuple[int, int, int]) -> str:
    return "#{:02x}{:02x}{:02x}".format(*rgb_color)

def adjust_brightness(rgb_color: tuple[int, int, int], factor: float) -> tuple[int, int, int]:
    hsv_color = colorsys.rgb_to_hsv(*[v / 255.0 for v in rgb_color])
    new_v = max(0, min(hsv_color[2] * factor, 1))
    new_rgb = colorsys.hsv_to_rgb(hsv_color[0], hsv_color[1], new_v)
    return tuple(int(v * 255) for v in new_rgb)

monochrome = Monochrome()

auth_token = os.environ['HF_TOKEN']

tokenizer_ext = AutoTokenizer.from_pretrained("AlGe/deberta-v3-large_AIS-token", token=auth_token)
model_ext = AutoModelForTokenClassification.from_pretrained("AlGe/deberta-v3-large_AIS-token", token=auth_token)
tokenizer_ext.model_max_length = 512
pipe_ext = pipeline("ner", model=model_ext, tokenizer=tokenizer_ext)

def process_ner(text: str, pipeline) -> dict:
    output = pipeline(text)
    entities = []
    current_entity = None
    for token in output:
        entity_type = token['entity'][2:]
        entity_prefix = token['entity'][:1]
        if current_entity is None or entity_type != current_entity['entity'] or (entity_prefix == 'B' and entity_type == current_entity['entity']):
            if current_entity is not None:
                entities.append(current_entity)
            current_entity = {
                "entity": entity_type,
                "start": token['start'],
                "end": token['end'],
                "scores": [token['score']],
                "tokens": [token['word']]
            }
        else:
            current_entity['end'] = token['end']
            current_entity['scores'].append(token['score'])
            current_entity['tokens'].append(token['word'])
    if current_entity is not None:
        entities.append(current_entity)
    for entity in entities:
        entity['average_score'] = sum(entity['scores']) / len(entity['scores'])
    return {"text": text, "entities": entities}

def generate_charts(ner_output_ext: dict) -> Tuple[go.Figure, np.ndarray]:
    entities_ext = [entity['entity'] for entity in ner_output_ext['entities']]
    entity_counts_ext = {entity: entities_ext.count(entity) for entity in set(entities_ext)}
    ext_labels = list(entity_counts_ext.keys())
    ext_sizes = list(entity_counts_ext.values())
    ext_color_map = {
        "INTemothou": "#FF7F50",
        "INTpercept": "#FF4500",
        "INTtime": "#FF6347",
        "INTplace": "#FFD700",
        "INTevent": "#FFA500",
        "EXTsemantic": "#4682B4",
        "EXTrepetition": "#5F9EA0",
        "EXTother": "#00CED1",
    }
    ext_colors = [ext_color_map.get(label, "#FFFFFF") for label in ext_labels]
    fig1 = go.Figure(data=[go.Pie(labels=ext_labels, values=ext_sizes, textinfo='label+percent', hole=.3, marker=dict(colors=ext_colors))])
    fig1.update_layout(
        template='plotly_dark',
        plot_bgcolor='rgba(0,0,0,0)',
        paper_bgcolor='rgba(0,0,0,0)'
    )
    wordcloud_image = generate_wordcloud(ner_output_ext['entities'], ext_color_map, "dh3.png")
    return fig1, wordcloud_image

def generate_wordcloud(entities: List[Dict], color_map: Dict[str, str], file_path: str) -> np.ndarray:
    # Construct the absolute path
    base_path = os.path.dirname(os.path.abspath(__file__))
    image_path = os.path.join(base_path, file_path)
    if not os.path.exists(image_path):
        raise FileNotFoundError(f"Mask image file not found: {image_path}")

    mask_image = np.array(Image.open(image_path))
    mask_height, mask_width = mask_image.shape[:2]

    word_details = []

    for entity in entities:
        for token in entity['tokens']:
            # Process each token
            token_text = token.replace("▁", " ").strip()
            if token_text:  # Ensure token is not empty
                word_details.append({
                    'text': token_text,
                    'score': entity.get('average_score', 0.5),
                    'entity': entity['entity']
                })

    # Calculate word frequency weighted by score
    word_freq = {}
    for detail in word_details:
        if detail['text'] in word_freq:
            word_freq[detail['text']]['score'] += detail['score']
            word_freq[detail['text']]['count'] += 1
        else:
            word_freq[detail['text']] = {'score': detail['score'], 'count': 1, 'entity': detail['entity']}

    # Average the scores and prepare final frequency dictionary
    final_word_freq = {word: details['score'] / details['count'] for word, details in word_freq.items()}

    # Prepare entity type mapping for color function
    word_to_entity = {word: details['entity'] for word, details in word_freq.items()}

    def color_func(word, font_size, position, orientation, random_state=None, **kwargs):
        entity_type = word_to_entity.get(word, None)
        return color_map.get(entity_type, "#FFFFFF")

    wordcloud = WordCloud(width=mask_width, height=mask_height, background_color='#121212', mask=mask_image, color_func=color_func).generate_from_frequencies(final_word_freq)

    plt.figure(figsize=(mask_width/100, mask_height/100))
    plt.imshow(wordcloud, interpolation='bilinear')
    plt.axis('off')
    plt.tight_layout(pad=0)

    plt_image = plt.gcf()
    plt_image.canvas.draw()
    image_array = np.frombuffer(plt_image.canvas.tostring_rgb(), dtype=np.uint8)
    image_array = image_array.reshape(plt_image.canvas.get_width_height()[::-1] + (3,))
    plt.close()

    return image_array

@spaces.GPU
def all(text: str):
    ner_output_ext = process_ner(text, pipe_ext)
    
    pie_chart, wordcloud_image = generate_charts(ner_output_ext)
    
    return (ner_output_ext, pie_chart, wordcloud_image)

examples = [
    ['Bevor ich meinen Hund kaufte bin ich immer alleine durch den Park gelaufen. Gestern war ich aber mit dem Hund losgelaufen. Das Wetter war sehr schön, nicht wie sonst im Winter. Ich weiß nicht genau. Mir fällt sonst nichts dazu ein. Wir trafen auf mehrere Spaziergänger. Ein Mann mit seinem Kind. Das Kind hat ein Eis gegessen.'],
]

iface = gr.Interface(
    fn=all,
    inputs=gr.Textbox(lines=5, label="Input Text", placeholder="Write about how your breakfast went or anything else that happened or might happen to you ..."),
    outputs=[
        gr.HighlightedText(label="Extended Sequence Classification",
                           color_map={
                               "INTemothou": "#FF7F50",  # Coral
                               "INTpercept": "#FF4500",  # OrangeRed
                               "INTtime": "#FF6347",     # Tomato
                               "INTplace": "#FFD700",    # Gold
                               "INTevent": "#FFA500",    # Orange
                               "EXTsemantic": "#4682B4", # SteelBlue
                               "EXTrepetition": "#5F9EA0", # CadetBlue
                               "EXTother": "#00CED1",    # DarkTurquoise
                           }
                          ),
        gr.Plot(label="Extended SeqClass Entity Distribution Pie Chart"),
        gr.Image(label="Entity Word Cloud")
    ],
    title="Scoring Demo",
    description="Autobiographical Memory Analysis: This demo combines two text - and two sequence classification models to showcase our automated Autobiographical Interview scoring method. Submit a narrative to see the results.",
    examples=examples,
    theme=monochrome
)

iface.launch()