File size: 6,191 Bytes
3ec9224 5be8df6 3ec9224 5be8df6 3ec9224 1ef8d7c 0abb90d 5be8df6 fc1e558 5be8df6 0abb90d 1ef8d7c 5be8df6 1ef8d7c 5be8df6 1ef8d7c 5be8df6 0abb90d 5be8df6 fc1e558 5be8df6 9733941 5be8df6 fc1e558 5be8df6 0abb90d 5be8df6 9733941 138ca2e 5be8df6 00bd139 5be8df6 0abb90d 5be8df6 fc1e558 5be8df6 1ef8d7c fc1e558 0abb90d fc1e558 5be8df6 00bd139 5be8df6 9733941 04361a6 9733941 8bef1bd 9733941 8bef1bd 9733941 8bef1bd 5be8df6 3ca2785 00bd139 1ef8d7c fc1e558 5be8df6 1da1e92 eb94a8f 9733941 ceae871 5be8df6 0abb90d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
import gradio as gr
import os
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.llms import HuggingFacePipeline
from langchain.chains import ConversationChain
from langchain.memory import ConversationBufferMemory
from langchain.llms import HuggingFaceHub
from pathlib import Path
import chromadb
# Load PDF document and create doc splits
def load_doc(list_file_path, chunk_size, chunk_overlap):
loaders = [PyPDFLoader(x) for x in list_file_path]
pages = []
for loader in loaders:
pages.extend(loader.load())
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=chunk_size,
chunk_overlap=chunk_overlap)
doc_splits = text_splitter.split_documents(pages)
return doc_splits
# Create vector database
def create_db(splits, collection_name):
embedding = HuggingFaceEmbeddings()
new_client = chromadb.EphemeralClient()
vectordb = Chroma.from_documents(
documents=splits,
embedding=embedding,
client=new_client,
collection_name=collection_name,
)
return vectordb
# Initialize langchain LLM chain
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
llm = HuggingFaceHub(
repo_id=llm_model,
model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k}
)
memory = ConversationBufferMemory(
memory_key="chat_history",
output_key='answer',
return_messages=True
)
retriever = vector_db.as_retriever()
qa_chain = ConversationalRetrievalChain.from_llm(
llm,
retriever=retriever,
chain_type="stuff",
memory=memory,
return_source_documents=True,
verbose=False,
)
progress(0.9, desc="Done!")
return qa_chain
# Initialize database and LLM chain
def initialize_demo(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()):
list_file_path = [x.name for x in list_file_obj if x is not None]
collection_name = Path(list_file_path[0]).stem.replace(" ", "-")[:50]
doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
vector_db = create_db(doc_splits, collection_name)
qa_chain = initialize_llmchain(
"mistralai/Mistral-7B-Instruct-v0.2",
0.7,
1024,
3,
vector_db,
progress
)
return vector_db, collection_name, qa_chain, "Complete!"
def format_chat_history(message, chat_history):
formatted_chat_history = []
for user_message, bot_message in chat_history:
formatted_chat_history.append(f"User: {user_message}")
formatted_chat_history.append(f"Assistant: {bot_message}")
return formatted_chat_history
def conversation(qa_chain, message, history):
formatted_chat_history = format_chat_history(message, history)
response = qa_chain({"question": message, "chat_history": formatted_chat_history})
response_answer = response["answer"]
if response_answer.find("Helpful Answer:") != -1:
response_answer = response_answer.split("Helpful Answer:")[-1]
response_sources = response["source_documents"]
response_source1 = response_sources[0].page_content.strip()
response_source2 = response_sources[1].page_content.strip()
response_source3 = response_sources[2].page_content.strip()
response_source1_page = response_sources[0].metadata["page"] + 1
response_source2_page = response_sources[1].metadata["page"] + 1
response_source3_page = response_sources[2].metadata["page"] + 1
new_history = history + [(message, response_answer)]
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
def demo():
with gr.Blocks(theme="base") as demo:
vector_db = gr.State()
qa_chain = gr.State()
collection_name = gr.State()
gr.Markdown(
"""<center><h2>PDF-based chatbot (powered by LangChain and open-source LLMs)</center></h2>
<h3>Ask any questions about your PDF documents, along with follow-ups</h3>
<b>Note:</b> This AI assistant performs retrieval-augmented generation from your PDF documents. \
When generating answers, it takes past questions into account (via conversational memory), and includes document references for clarity purposes.</i>
<br><b>Warning:</b> This space uses the free CPU Basic hardware from Hugging Face. Some steps and LLM models used below (free inference endpoints) can take some time to generate an output.<br>
""")
document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload your PDF documents (single or multiple)")
slider_chunk_size = gr.Slider(minimum=100, maximum=1000, value=600, step=20, label="Chunk size", info="Chunk size", interactive=True)
slider_chunk_overlap = gr.Slider(minimum=10, maximum=200, value=40, step=10, label="Chunk overlap", info="Chunk overlap", interactive=True)
db_progress = gr.Textbox(label="Vector database initialization", value="None")
# Initialize vector database and LLM chain in the background
vector_db, collection_name, qa_chain, status = initialize_demo([document], slider_chunk_size, slider_chunk_overlap, db_progress)
chatbot = gr.Chatbot(height=300)
msg = gr.Textbox(placeholder="Type message", container=True)
submit_btn = gr.Button("Submit")
clear_btn = gr.ClearButton([msg, chatbot])
msg.submit(conversation, inputs=[qa_chain, msg, chatbot], outputs=[qa_chain, msg, chatbot], queue=False)
submit_btn.click(conversation, inputs=[qa_chain, msg, chatbot], outputs=[qa_chain, msg, chatbot], queue=False)
clear_btn.click(lambda:[None,"",0,"",0,"",0], inputs=None, outputs=[chatbot], queue=False)
demo.queue().launch(debug=True)
if __name__ == "__main__":
demo()
|