Spaces:
Build error
Build error
import os | |
import json | |
import time | |
import logging | |
from pathlib import Path | |
from typing import List, Dict, Optional | |
from dataclasses import dataclass | |
import fitz # PyMuPDF | |
from sentence_transformers import SentenceTransformer | |
from llama_cpp import Llama | |
from fastapi.encoders import jsonable_encoder | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
class ProductSpec: | |
name: str | |
description: Optional[str] = None | |
price: Optional[float] = None | |
attributes: Dict[str, str] = None | |
tables: List[Dict] = None | |
def to_dict(self): | |
return jsonable_encoder(self) | |
class PDFProcessor: | |
def __init__(self): | |
self.emb_model = self._initialize_emb_model("all-MiniLM-L6-v2") | |
# self.llm = self._initialize_llm("llama-2-7b.Q2_K.gguf") | |
self.llm = self._initialize_llm("deepseek-llm-7b-base.Q2_K.gguf") | |
self.output_dir = Path("./output") | |
self.output_dir.mkdir(exist_ok=True) | |
def _initialize_emb_model(self, model_name): | |
try: | |
from sentence_transformers import SentenceTransformer | |
return SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') | |
except: | |
# Load model directly | |
from transformers import AutoTokenizer, AutoModel | |
tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/" + model_name) | |
model = AutoModel.from_pretrained("sentence-transformers/" + model_name) | |
return model | |
def _initialize_llm(self, model_name): | |
"""Initialize LLM with automatic download if needed""" | |
# model_path = os.path.join("models/", model_name) | |
# if os.path.exists(model_path): | |
# return Llama( | |
# model_path=model_path, | |
# n_ctx=1024, | |
# n_gpu_layers=-1, | |
# n_threads=os.cpu_count() - 1, | |
# verbose=False | |
# ) | |
return Llama.from_pretrained( | |
repo_id="TheBloke/deepseek-llm-7B-base-GGUF", | |
filename=model_name, | |
) | |
def process_pdf(self, pdf_path: str) -> Dict: | |
"""Process PDF using PyMuPDF""" | |
start_time = time.time() | |
# Open PDF | |
doc = fitz.open(pdf_path) | |
text_blocks = [] | |
tables = [] | |
# Extract text and tables | |
for page_num, page in enumerate(doc): | |
# Extract text blocks | |
text_blocks.extend(self._extract_text_blocks(page)) | |
# Extract tables | |
tables.extend(self._extract_tables(page, page_num)) | |
# Process text blocks with LLM | |
products = [] | |
for block in text_blocks: | |
product = self._process_text_block(block) | |
if product: | |
product.tables = tables | |
products.append(product.to_dict()) | |
logger.info(f"Processed {len(products)} products in {time.time() - start_time:.2f}s") | |
return {"products": products, "tables": tables} | |
def _extract_text_blocks(self, page) -> List[str]: | |
"""Extract text blocks from a PDF page""" | |
blocks = [] | |
for block in page.get_text("blocks"): | |
blocks.append(block[4]) # The text content is at index 4 | |
return blocks | |
def _extract_tables(self, page, page_num: int) -> List[Dict]: | |
"""Extract tables from a PDF page""" | |
tables = [] | |
try: | |
tab = page.find_tables() | |
if tab.tables: | |
for table_idx, table in enumerate(tab.tables): | |
table_data = table.extract() | |
if table_data: | |
tables.append({ | |
"page": page_num + 1, | |
"cells": table_data, | |
"header": table.header.names if table.header else [], | |
"content": table_data | |
}) | |
except Exception as e: | |
logger.warning(f"Error extracting tables from page {page_num}: {e}") | |
return tables | |
def _process_text_block(self, text: str) -> Optional[ProductSpec]: | |
"""Process text block with LLM""" | |
prompt = self._generate_query_prompt(text) | |
try: | |
response = self.llm.create_chat_completion( | |
messages=[{"role": "user", "content": prompt}], | |
temperature=0.1, | |
max_tokens=512 | |
) | |
return self._parse_response(response['choices'][0]['message']['content']) | |
except Exception as e: | |
logger.warning(f"Error processing text block: {e}") | |
return None | |
def _generate_query_prompt(self, text: str) -> str: | |
"""Generate extraction prompt""" | |
return f"""Extract product specifications from this text: | |
{text} | |
Return JSON format: | |
{{ | |
"name": "product name", | |
"description": "product description", | |
"price": numeric_price, | |
"attributes": {{ "key": "value" }} | |
}}""" | |
def _parse_response(self, response: str) -> Optional[ProductSpec]: | |
"""Parse LLM response""" | |
try: | |
json_start = response.find('{') | |
json_end = response.rfind('}') + 1 | |
data = json.loads(response[json_start:json_end]) | |
return ProductSpec( | |
name=data.get('name', ''), | |
description=data.get('description'), | |
price=data.get('price'), | |
attributes=data.get('attributes', {}) | |
) | |
except (json.JSONDecodeError, KeyError) as e: | |
logger.warning(f"Parse error: {e}") | |
return None | |
def process_pdf_catalog(pdf_path: str): | |
processor = PDFProcessor() | |
try: | |
result = processor.process_pdf(pdf_path) | |
return result, "Processing completed successfully!" | |
except Exception as e: | |
logger.error(f"Processing failed: {e}") | |
return {}, "Error processing PDF" | |