File size: 8,901 Bytes
bd6726a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0eb155c
fc4ad97
bd6726a
 
 
 
 
 
 
 
 
d1be458
fc4ad97
bd6726a
 
fc4ad97
 
bd6726a
 
fc4ad97
 
 
 
bd6726a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1be458
 
 
7f6d4e3
 
 
 
 
 
 
bd6726a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0eb155c
bd6726a
fc4ad97
bd6726a
0eb155c
fc4ad97
bd6726a
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
from ultralytics import YOLO
import numpy as np
import matplotlib.pyplot as plt
import gradio as gr
import cv2
import torch
# import queue
# import threading
from PIL import Image


model = YOLO('checkpoints/FastSAM.pt')  # load a custom model


def fast_process(annotations, image, high_quality, device):
    if isinstance(annotations[0],dict):
        annotations = [annotation['segmentation'] for annotation in annotations]

    original_h = image.height
    original_w = image.width
    # fig = plt.figure(figsize=(10, 10))
    # plt.imshow(image)
    if high_quality == True:
        if isinstance(annotations[0],torch.Tensor):
            annotations = np.array(annotations.cpu())
        for i, mask in enumerate(annotations):
            mask = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_CLOSE, np.ones((3, 3), np.uint8))
            annotations[i] = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_OPEN, np.ones((8, 8), np.uint8))
    if device == 'cpu':
        annotations = np.array(annotations)
        inner_mask = fast_show_mask(annotations,
                       plt.gca(),
                       bbox=None,
                       points=None,
                       pointlabel=None,
                       retinamask=True,
                       target_height=original_h,
                       target_width=original_w)
    else:
        if isinstance(annotations[0],np.ndarray):
            annotations = torch.from_numpy(annotations)
        inner_mask = fast_show_mask_gpu(annotations,
                           plt.gca(),
                           bbox=None,
                           points=None,
                           pointlabel=None)
    if isinstance(annotations, torch.Tensor):
        annotations = annotations.cpu().numpy()
    
    if high_quality:
        contour_all = []
        temp = np.zeros((original_h, original_w,1))
        for i, mask in enumerate(annotations):
            if type(mask) == dict:
                mask = mask['segmentation']
            annotation = mask.astype(np.uint8)
            contours, _ = cv2.findContours(annotation, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
            for contour in contours:
                contour_all.append(contour)
        cv2.drawContours(temp, contour_all, -1, (255, 255, 255), 2)
        color = np.array([0 / 255, 0 / 255, 255 / 255, 0.9])
        contour_mask = temp / 255 * color.reshape(1, 1, -1)
        # plt.imshow(contour_mask)
    image = image.convert('RGBA')
    
    overlay_inner = Image.fromarray((inner_mask * 255).astype(np.uint8), 'RGBA')
    image.paste(overlay_inner, (0, 0), overlay_inner)
    
    if high_quality:
        overlay_contour = Image.fromarray((contour_mask * 255).astype(np.uint8), 'RGBA')
        image.paste(overlay_contour, (0, 0), overlay_contour)
        
    return image
    # plt.axis('off')
    # plt.tight_layout()
    # return fig


#   CPU post process
def fast_show_mask(annotation, ax, bbox=None, 

                   points=None, pointlabel=None,

                   retinamask=True, target_height=960,

                   target_width=960):
    msak_sum = annotation.shape[0]
    height = annotation.shape[1]
    weight = annotation.shape[2]
    # 将annotation 按照面积 排序
    areas = np.sum(annotation, axis=(1, 2))
    sorted_indices = np.argsort(areas)[::1]
    annotation = annotation[sorted_indices]

    index = (annotation != 0).argmax(axis=0)
    color = np.random.random((msak_sum,1,1,3))
    transparency = np.ones((msak_sum,1,1,1)) * 0.6
    visual = np.concatenate([color,transparency],axis=-1)
    mask_image = np.expand_dims(annotation,-1) * visual

    mask = np.zeros((height,weight,4))

    h_indices, w_indices = np.meshgrid(np.arange(height), np.arange(weight), indexing='ij')
    indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None))
    # 使用向量化索引更新show的值
    mask[h_indices, w_indices, :] = mask_image[indices]
    if bbox is not None:
        x1, y1, x2, y2 = bbox
        ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor='b', linewidth=1))
    # draw point
    if points is not None:
        plt.scatter([point[0] for i, point in enumerate(points) if pointlabel[i]==1], [point[1] for i, point in enumerate(points) if pointlabel[i]==1], s=20, c='y')
        plt.scatter([point[0] for i, point in enumerate(points) if pointlabel[i]==0], [point[1] for i, point in enumerate(points) if pointlabel[i]==0], s=20, c='m')
    
    if retinamask==False:
        mask = cv2.resize(mask, (target_width, target_height), interpolation=cv2.INTER_NEAREST)
    # ax.imshow(mask)
    
    return mask


def fast_show_mask_gpu(annotation, ax,

                       bbox=None, points=None, 

                       pointlabel=None):
    msak_sum = annotation.shape[0]
    height = annotation.shape[1]
    weight = annotation.shape[2]
    areas = torch.sum(annotation, dim=(1, 2))
    sorted_indices = torch.argsort(areas, descending=False)
    annotation = annotation[sorted_indices]
    # 找每个位置第一个非零值下标
    index = (annotation != 0).to(torch.long).argmax(dim=0)
    color = torch.rand((msak_sum,1,1,3)).to(annotation.device)
    transparency = torch.ones((msak_sum,1,1,1)).to(annotation.device) * 0.6
    visual = torch.cat([color,transparency],dim=-1)
    mask_image = torch.unsqueeze(annotation,-1) * visual
    # 按index取数,index指每个位置选哪个batch的数,把mask_image转成一个batch的形式
    mask = torch.zeros((height,weight,4)).to(annotation.device)
    h_indices, w_indices = torch.meshgrid(torch.arange(height), torch.arange(weight))
    indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None))
    # 使用向量化索引更新show的值
    mask[h_indices, w_indices, :] = mask_image[indices]
    mask_cpu = mask.cpu().numpy()
    if bbox is not None:
        x1, y1, x2, y2 = bbox
        ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor='b', linewidth=1))
    # draw point
    if points is not None:
        plt.scatter([point[0] for i, point in enumerate(points) if pointlabel[i]==1], [point[1] for i, point in enumerate(points) if pointlabel[i]==1], s=20, c='y')
        plt.scatter([point[0] for i, point in enumerate(points) if pointlabel[i]==0], [point[1] for i, point in enumerate(points) if pointlabel[i]==0], s=20, c='m')
    # ax.imshow(mask_cpu)
    return mask_cpu


# # 预测队列
# prediction_queue = queue.Queue(maxsize=5)

# # 线程锁
# lock = threading.Lock()

device = 'cuda' if torch.cuda.is_available() else 'cpu'

def predict(input, input_size=1024, high_visual_quality=True):
    input_size = int(input_size)  # 确保 imgsz 是整数
    
    # Thanks for the suggestion by hysts in HuggingFace.
    w, h = input.size
    scale = input_size / max(w, h)
    new_w = int(w * scale)
    new_h = int(h * scale)
    input = input.resize((new_w, new_h))
    
    results = model(input, device=device, retina_masks=True, iou=0.7, conf=0.25, imgsz=input_size)
    fig = fast_process(annotations=results[0].masks.data,
                             image=input, high_quality=high_visual_quality, device=device)
    return fig



# input_size=1024
# high_quality_visual=True
# inp = 'assets/sa_192.jpg'
# input = Image.open(inp)
# device = 'cuda' if torch.cuda.is_available() else 'cpu'
# input_size = int(input_size)  # 确保 imgsz 是整数
# results = model(input, device=device, retina_masks=True, iou=0.7, conf=0.25, imgsz=input_size)
# pil_image = fast_process(annotations=results[0].masks.data,
#                             image=input, high_quality=high_quality_visual, device=device)

app_interface = gr.Interface(fn=predict,
                    inputs=[gr.Image(type='pil'),
                            gr.components.Slider(minimum=512, maximum=1024, value=1024, step=64, label='input_size'),
                            gr.components.Checkbox(value=True, label='high_visual_quality')],
                    # outputs=['plot'],
                    outputs=gr.Image(type='pil'),
                    examples=[["assets/sa_8776.jpg"]],
                    # #    ["assets/sa_1309.jpg", 1024]],
                    # examples=[["assets/sa_192.jpg"], ["assets/sa_414.jpg"],
                    #           ["assets/sa_561.jpg"], ["assets/sa_862.jpg"],
                    #           ["assets/sa_1309.jpg"], ["assets/sa_8776.jpg"],
                    #           ["assets/sa_10039.jpg"], ["assets/sa_11025.jpg"],],
                    cache_examples=True,
                    title="Fast Segment Anything (Everything mode)"
                    )


app_interface.queue(concurrency_count=1, max_size=20)
app_interface.launch()