AndreasLH's picture
upload repo
56bd2b5
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
"""
Misc functions, including distributed helpers.
Mostly copy-paste from torchvision references.
"""
import os
import random
import subprocess
import time
from collections import OrderedDict, defaultdict, deque
import datetime
import pickle
from typing import Optional, List
import json, time
import numpy as np
import torch
import torch.distributed as dist
from torch import Tensor
import colorsys
import torch.nn.functional as F
import cv2
# needed due to empty tensor bug in pytorch and torchvision 0.5
import torchvision
class SmoothedValue(object):
"""Track a series of values and provide access to smoothed values over a
window or the global series average.
"""
def __init__(self, window_size=20, fmt=None):
if fmt is None:
fmt = "{median:.4f} ({global_avg:.4f})"
self.deque = deque(maxlen=window_size)
self.total = 0.0
self.count = 0
self.fmt = fmt
def update(self, value, n=1):
self.deque.append(value)
self.count += n
self.total += value * n
def synchronize_between_processes(self):
"""
Warning: does not synchronize the deque!
"""
if not is_dist_avail_and_initialized():
return
t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda')
dist.barrier()
dist.all_reduce(t)
t = t.tolist()
self.count = int(t[0])
self.total = t[1]
@property
def median(self):
d = torch.tensor(list(self.deque))
if d.shape[0] == 0:
return 0
return d.median().item()
@property
def avg(self):
d = torch.tensor(list(self.deque), dtype=torch.float32)
return d.mean().item()
@property
def global_avg(self):
return self.total / self.count
@property
def max(self):
return max(self.deque)
@property
def value(self):
return self.deque[-1]
def __str__(self):
return self.fmt.format(
median=self.median,
avg=self.avg,
global_avg=self.global_avg,
max=self.max,
value=self.value)
def all_gather(data):
"""
Run all_gather on arbitrary picklable data (not necessarily tensors)
Args:
data: any picklable object
Returns:
list[data]: list of data gathered from each rank
"""
world_size = get_world_size()
if world_size == 1:
return [data]
# serialized to a Tensor
buffer = pickle.dumps(data)
storage = torch.ByteStorage.from_buffer(buffer)
tensor = torch.ByteTensor(storage).to("cuda")
# obtain Tensor size of each rank
local_size = torch.tensor([tensor.numel()], device="cuda")
size_list = [torch.tensor([0], device="cuda") for _ in range(world_size)]
dist.all_gather(size_list, local_size)
size_list = [int(size.item()) for size in size_list]
max_size = max(size_list)
# receiving Tensor from all ranks
# we pad the tensor because torch all_gather does not support
# gathering tensors of different shapes
tensor_list = []
for _ in size_list:
tensor_list.append(torch.empty((max_size,), dtype=torch.uint8, device="cuda"))
if local_size != max_size:
padding = torch.empty(size=(max_size - local_size,), dtype=torch.uint8, device="cuda")
tensor = torch.cat((tensor, padding), dim=0)
dist.all_gather(tensor_list, tensor)
data_list = []
for size, tensor in zip(size_list, tensor_list):
buffer = tensor.cpu().numpy().tobytes()[:size]
data_list.append(pickle.loads(buffer))
return data_list
def reduce_dict(input_dict, average=True):
"""
Args:
input_dict (dict): all the values will be reduced
average (bool): whether to do average or sum
Reduce the values in the dictionary from all processes so that all processes
have the averaged results. Returns a dict with the same fields as
input_dict, after reduction.
"""
world_size = get_world_size()
if world_size < 2:
return input_dict
with torch.no_grad():
names = []
values = []
# sort the keys so that they are consistent across processes
for k in sorted(input_dict.keys()):
names.append(k)
values.append(input_dict[k])
values = torch.stack(values, dim=0)
dist.all_reduce(values)
if average:
values /= world_size
reduced_dict = {k: v for k, v in zip(names, values)}
return reduced_dict
class MetricLogger(object):
def __init__(self, delimiter="\t"):
self.meters = defaultdict(SmoothedValue)
self.delimiter = delimiter
def update(self, **kwargs):
for k, v in kwargs.items():
if isinstance(v, torch.Tensor):
v = v.item()
assert isinstance(v, (float, int))
self.meters[k].update(v)
def __getattr__(self, attr):
if attr in self.meters:
return self.meters[attr]
if attr in self.__dict__:
return self.__dict__[attr]
raise AttributeError("'{}' object has no attribute '{}'".format(
type(self).__name__, attr))
def __str__(self):
loss_str = []
for name, meter in self.meters.items():
# print(name, str(meter))
# import ipdb;ipdb.set_trace()
if meter.count > 0:
loss_str.append(
"{}: {}".format(name, str(meter))
)
return self.delimiter.join(loss_str)
def synchronize_between_processes(self):
for meter in self.meters.values():
meter.synchronize_between_processes()
def add_meter(self, name, meter):
self.meters[name] = meter
def log_every(self, iterable, print_freq, header=None, logger=None):
if logger is None:
print_func = print
else:
print_func = logger.info
i = 0
if not header:
header = ''
start_time = time.time()
end = time.time()
iter_time = SmoothedValue(fmt='{avg:.4f}')
data_time = SmoothedValue(fmt='{avg:.4f}')
space_fmt = ':' + str(len(str(len(iterable)))) + 'd'
if torch.cuda.is_available():
log_msg = self.delimiter.join([
header,
'[{0' + space_fmt + '}/{1}]',
'eta: {eta}',
'{meters}',
'time: {time}',
'data: {data}',
'max mem: {memory:.0f}'
])
else:
log_msg = self.delimiter.join([
header,
'[{0' + space_fmt + '}/{1}]',
'eta: {eta}',
'{meters}',
'time: {time}',
'data: {data}'
])
MB = 1024.0 * 1024.0
for obj in iterable:
data_time.update(time.time() - end)
yield obj
iter_time.update(time.time() - end)
if i % print_freq == 0 or i == len(iterable) - 1:
eta_seconds = iter_time.global_avg * (len(iterable) - i)
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
if torch.cuda.is_available():
print_func(log_msg.format(
i, len(iterable), eta=eta_string,
meters=str(self),
time=str(iter_time), data=str(data_time),
memory=torch.cuda.max_memory_allocated() / MB))
else:
print_func(log_msg.format(
i, len(iterable), eta=eta_string,
meters=str(self),
time=str(iter_time), data=str(data_time)))
i += 1
end = time.time()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print_func('{} Total time: {} ({:.4f} s / it)'.format(
header, total_time_str, total_time / len(iterable)))
def get_sha():
cwd = os.path.dirname(os.path.abspath(__file__))
def _run(command):
return subprocess.check_output(command, cwd=cwd).decode('ascii').strip()
sha = 'N/A'
diff = "clean"
branch = 'N/A'
try:
sha = _run(['git', 'rev-parse', 'HEAD'])
subprocess.check_output(['git', 'diff'], cwd=cwd)
diff = _run(['git', 'diff-index', 'HEAD'])
diff = "has uncommited changes" if diff else "clean"
branch = _run(['git', 'rev-parse', '--abbrev-ref', 'HEAD'])
except Exception:
pass
message = f"sha: {sha}, status: {diff}, branch: {branch}"
return message
def setup_for_distributed(is_master):
"""
This function disables printing when not in master process
"""
import builtins as __builtin__
builtin_print = __builtin__.print
def print(*args, **kwargs):
force = kwargs.pop('force', False)
if is_master or force:
builtin_print(*args, **kwargs)
__builtin__.print = print
def is_dist_avail_and_initialized():
if not dist.is_available():
return False
if not dist.is_initialized():
return False
return True
def get_world_size():
if not is_dist_avail_and_initialized():
return 1
return dist.get_world_size()
def get_rank():
if not is_dist_avail_and_initialized():
return 0
return dist.get_rank()
def is_main_process():
return get_rank() == 0
def save_on_master(*args, **kwargs):
if is_main_process():
torch.save(*args, **kwargs)
def init_distributed_mode(args):
if 'WORLD_SIZE' in os.environ and os.environ['WORLD_SIZE'] != '': # 'RANK' in os.environ and
# args.rank = int(os.environ["RANK"])
# args.world_size = int(os.environ['WORLD_SIZE'])
# args.gpu = args.local_rank = int(os.environ['LOCAL_RANK'])
# launch by torch.distributed.launch
# Single node
# python -m torch.distributed.launch --nproc_per_node=8 main.py --world-size 1 --rank 0 ...
# Multi nodes
# python -m torch.distributed.launch --nproc_per_node=8 main.py --world-size 2 --rank 0 --dist-url 'tcp://IP_OF_NODE0:FREEPORT' ...
# python -m torch.distributed.launch --nproc_per_node=8 main.py --world-size 2 --rank 1 --dist-url 'tcp://IP_OF_NODE0:FREEPORT' ...
local_world_size = int(os.environ['WORLD_SIZE'])
args.world_size = args.world_size * local_world_size
args.gpu = args.local_rank = int(os.environ['LOCAL_RANK'])
args.rank = args.rank * local_world_size + args.local_rank
print('world size: {}, rank: {}, local rank: {}'.format(args.world_size, args.rank, args.local_rank))
print(json.dumps(dict(os.environ), indent=2))
elif 'SLURM_PROCID' in os.environ:
args.rank = int(os.environ['SLURM_PROCID'])
args.gpu = args.local_rank = int(os.environ['SLURM_LOCALID'])
args.world_size = int(os.environ['SLURM_NPROCS'])
print('world size: {}, world rank: {}, local rank: {}, device_count: {}'.format(args.world_size, args.rank, args.local_rank, torch.cuda.device_count()))
else:
print('Not using distributed mode')
args.distributed = False
args.world_size = 1
args.rank = 0
args.local_rank = 0
return
print("world_size:{} rank:{} local_rank:{}".format(args.world_size, args.rank, args.local_rank))
args.distributed = True
torch.cuda.set_device(args.local_rank)
args.dist_backend = 'nccl'
print('| distributed init (rank {}): {}'.format(args.rank, args.dist_url), flush=True)
torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
world_size=args.world_size, rank=args.rank)
print("Before torch.distributed.barrier()")
torch.distributed.barrier()
print("End torch.distributed.barrier()")
setup_for_distributed(args.rank == 0)
def masks_to_boxes(masks):
"""Compute the bounding boxes around the provided masks
The masks should be in format [N, H, W] where N is the number of masks, (H, W) are the spatial dimensions.
Returns a [N, 4] tensors, with the boxes in xyxy format
"""
if masks.numel() == 0:
return torch.zeros((0, 4), device=masks.device)
h, w = masks.shape[-2:]
y = torch.arange(0, h, dtype=torch.float)
x = torch.arange(0, w, dtype=torch.float)
y, x = torch.meshgrid(y, x)
y = y.to(masks)
x = x.to(masks)
x_mask = ((masks>128) * x.unsqueeze(0))
x_max = x_mask.flatten(1).max(-1)[0]
x_min = x_mask.masked_fill(~(masks>128), 1e8).flatten(1).min(-1)[0]
y_mask = ((masks>128) * y.unsqueeze(0))
y_max = y_mask.flatten(1).max(-1)[0]
y_min = y_mask.masked_fill(~(masks>128), 1e8).flatten(1).min(-1)[0]
return torch.stack([x_min, y_min, x_max, y_max], 1)
def box_cxcywh_to_xyxy(x):
x_c, y_c, w, h = x.unbind(-1)
b = [(x_c - 0.5 * w), (y_c - 0.5 * h),
(x_c + 0.5 * w), (y_c + 0.5 * h)]
return torch.stack(b, dim=-1)
def box_xyxy_to_cxcywh(x):
x0, y0, x1, y1 = x.unbind(-1)
b = [(x0 + x1) / 2, (y0 + y1) / 2,
(x1 - x0), (y1 - y0)]
return torch.stack(b, dim=-1)
def box_noise(boxes, box_noise_scale=0):
known_bbox_expand = box_xyxy_to_cxcywh(boxes)
diff = torch.zeros_like(known_bbox_expand)
diff[:, :2] = known_bbox_expand[:, 2:] / 2
diff[:, 2:] = known_bbox_expand[:, 2:]
known_bbox_expand += torch.mul((torch.rand_like(known_bbox_expand) * 2 - 1.0),diff).cuda() * box_noise_scale
boxes = box_cxcywh_to_xyxy(known_bbox_expand)
boxes = boxes.clamp(min=0.0, max=1024)
return boxes
def masks_sample_points(masks,k=10):
"""Sample points on mask
"""
if masks.numel() == 0:
return torch.zeros((0, 2), device=masks.device)
h, w = masks.shape[-2:]
y = torch.arange(0, h, dtype=torch.float)
x = torch.arange(0, w, dtype=torch.float)
y, x = torch.meshgrid(y, x)
y = y.to(masks)
x = x.to(masks)
# k = 10
samples = []
for b_i in range(len(masks)):
select_mask = (masks[b_i]>128)
x_idx = torch.masked_select(x,select_mask)
y_idx = torch.masked_select(y,select_mask)
perm = torch.randperm(x_idx.size(0))
idx = perm[:k]
samples_x = x_idx[idx]
samples_y = y_idx[idx]
samples_xy = torch.cat((samples_x[:,None],samples_y[:,None]),dim=1)
samples.append(samples_xy)
samples = torch.stack(samples)
return samples
# Add noise to mask input
# From Mask Transfiner https://github.com/SysCV/transfiner
def masks_noise(masks):
def get_incoherent_mask(input_masks, sfact):
mask = input_masks.float()
w = input_masks.shape[-1]
h = input_masks.shape[-2]
mask_small = F.interpolate(mask, (h//sfact, w//sfact), mode='bilinear')
mask_recover = F.interpolate(mask_small, (h, w), mode='bilinear')
mask_residue = (mask - mask_recover).abs()
mask_residue = (mask_residue >= 0.01).float()
return mask_residue
gt_masks_vector = masks / 255
mask_noise = torch.randn(gt_masks_vector.shape, device= gt_masks_vector.device) * 1.0
inc_masks = get_incoherent_mask(gt_masks_vector, 8)
gt_masks_vector = ((gt_masks_vector + mask_noise * inc_masks) > 0.5).float()
gt_masks_vector = gt_masks_vector * 255
return gt_masks_vector
def mask_iou(pred_label,label):
'''
calculate mask iou for pred_label and gt_label
'''
pred_label = (pred_label>0)[0].int()
label = (label>128)[0].int()
intersection = ((label * pred_label) > 0).sum()
union = ((label + pred_label) > 0).sum()
return intersection / union
# General util function to get the boundary of a binary mask.
# https://gist.github.com/bowenc0221/71f7a02afee92646ca05efeeb14d687d
def mask_to_boundary(mask, dilation_ratio=0.02):
"""
Convert binary mask to boundary mask.
:param mask (numpy array, uint8): binary mask
:param dilation_ratio (float): ratio to calculate dilation = dilation_ratio * image_diagonal
:return: boundary mask (numpy array)
"""
h, w = mask.shape
img_diag = np.sqrt(h ** 2 + w ** 2)
dilation = int(round(dilation_ratio * img_diag))
if dilation < 1:
dilation = 1
# Pad image so mask truncated by the image border is also considered as boundary.
new_mask = cv2.copyMakeBorder(mask, 1, 1, 1, 1, cv2.BORDER_CONSTANT, value=0)
kernel = np.ones((3, 3), dtype=np.uint8)
new_mask_erode = cv2.erode(new_mask, kernel, iterations=dilation)
mask_erode = new_mask_erode[1 : h + 1, 1 : w + 1]
# G_d intersects G in the paper.
return mask - mask_erode
def boundary_iou(gt, dt, dilation_ratio=0.02):
"""
Compute boundary iou between two binary masks.
:param gt (numpy array, uint8): binary mask
:param dt (numpy array, uint8): binary mask
:param dilation_ratio (float): ratio to calculate dilation = dilation_ratio * image_diagonal
:return: boundary iou (float)
"""
device = gt.device
dt = (dt>0)[0].cpu().byte().numpy()
gt = (gt>128)[0].cpu().byte().numpy()
gt_boundary = mask_to_boundary(gt, dilation_ratio)
dt_boundary = mask_to_boundary(dt, dilation_ratio)
intersection = ((gt_boundary * dt_boundary) > 0).sum()
union = ((gt_boundary + dt_boundary) > 0).sum()
boundary_iou = intersection / union
return torch.tensor(boundary_iou).float().to(device)