Spaces:
Running
Running
import streamlit as st | |
from PIL import Image | |
import torch | |
from transformers import AutoModelForCausalLM, AutoProcessor | |
import numpy as np | |
import supervision as sv | |
import albumentations as A | |
import cv2 | |
from transformers import AutoConfig | |
import yaml | |
# Set Streamlit page configuration for a wide layout | |
st.set_page_config(layout="wide") | |
# Custom CSS for better layout and mobile responsiveness | |
st.markdown(""" | |
<style> | |
.main { | |
max-width: 1200px; /* Max width for content */ | |
margin: 0 auto; | |
} | |
.block-container { | |
padding-top: 2rem; | |
padding-bottom: 2rem; | |
padding-left: 3rem; | |
padding-right: 3rem; | |
} | |
.title { | |
font-size: 2.5rem; | |
text-align: center; | |
color: #FF6347; | |
} | |
.subheader { | |
font-size: 1.5rem; | |
margin-bottom: 20px; | |
} | |
.btn { | |
font-size: 1.1rem; | |
padding: 10px 20px; | |
background-color: #FF6347; | |
color: white; | |
border-radius: 5px; | |
border: none; | |
cursor: pointer; | |
} | |
.btn:hover { | |
background-color: #FF4500; | |
} | |
.column-spacing { | |
display: flex; | |
justify-content: space-between; | |
} | |
.col-half { | |
width: 48%; | |
} | |
.col-full { | |
width: 100%; | |
} | |
.instructions { | |
padding: 20px; | |
background-color: #f9f9f9; | |
border-radius: 8px; | |
box-shadow: 0 2px 10px rgba(0, 0, 0, 0.1); | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
# Load Model and Processor | |
def load_model(): | |
REVISION = 'refs/pr/6' | |
MODEL_NAME = "RioJune/AD-KD-MICCAI25" | |
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
config_model = AutoConfig.from_pretrained("microsoft/Florence-2-base-ft", trust_remote_code=True) | |
config_model.vision_config.model_type = "davit" | |
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, trust_remote_code=True, config=config_model).to(DEVICE) | |
BASE_PROCESSOR = "microsoft/Florence-2-base-ft" | |
processor = AutoProcessor.from_pretrained(BASE_PROCESSOR, trust_remote_code=True) | |
processor.image_processor.size = 512 | |
processor.image_processor.crop_size = 512 | |
return model, processor, DEVICE | |
model, processor, DEVICE = load_model() | |
# Load Definitions | |
def load_definitions(): | |
vindr_path = 'configs/vindr_definition.yaml' | |
padchest_path = 'configs/padchest_definition.yaml' | |
prompt_path = 'examples/prompt.yaml' | |
with open(vindr_path, 'r') as file: | |
vindr_definitions = yaml.safe_load(file) | |
with open(padchest_path, 'r') as file: | |
padchest_definitions = yaml.safe_load(file) | |
with open(prompt_path, 'r') as file: | |
prompt_definitions = yaml.safe_load(file) | |
return vindr_definitions, padchest_definitions, prompt_definitions | |
vindr_definitions, padchest_definitions, prompt_definitions = load_definitions() | |
dataset_options = {"Vindr": vindr_definitions, "PadChest": padchest_definitions} | |
def load_example_images(): | |
return list(prompt_definitions.keys()) | |
example_images = load_example_images() | |
def apply_transform(image, size_mode=512): | |
pad_resize_transform = A.Compose([ | |
A.LongestMaxSize(max_size=size_mode, interpolation=cv2.INTER_AREA), | |
A.PadIfNeeded(min_height=size_mode, min_width=size_mode, border_mode=cv2.BORDER_CONSTANT, value=(0, 0, 0)), | |
A.Resize(height=512, width=512, interpolation=cv2.INTER_AREA), | |
]) | |
image_np = np.array(image) | |
transformed = pad_resize_transform(image=image_np) | |
return transformed["image"] | |
# Streamlit UI with Colorful Title and Emojis | |
st.markdown("<h1 class='title'>π©Ί Enhancing Abnormality Grounding for Vision Language Models with Knowledge Descriptions π</h1>", unsafe_allow_html=True) | |
st.markdown( | |
"<p style='text-align: center; font-size: 18px;'>Welcome to a simple demo of our work! π Choose an example or upload your own image to get started! π</p>", | |
unsafe_allow_html=True | |
) | |
# Display Example Images First | |
st.subheader("π Example Images") | |
selected_example = st.selectbox("Choose an example", example_images) | |
image = Image.open(selected_example).convert("RGB") | |
example_diseases = prompt_definitions.get(selected_example, []) | |
st.write("**Associated Diseases:**", ", ".join(example_diseases)) | |
# Layout for Original Image and Instructions | |
col1, col2 = st.columns([1, 2]) | |
# Left column for original image | |
with col1: | |
st.image(image, caption=f"Original Example Image: {selected_example}", width=400) | |
# Right column for Instructions and Run Inference Button | |
with col2: | |
st.subheader("βοΈ Instructions to Get Started:") | |
st.write(""" | |
- **Run Inference**: Click the "Run Inference on Example" button to process the image and display the results. | |
- **Choose an Example**: π Select an example image from the dataset to view its associated diseases. | |
- **Upload Your Own Image**: π€ Upload an image of your choice to analyze it for diseases. | |
- **Select Dataset**: π Choose between available datasets (Vindr or PadChest) for disease information. | |
- **Select Disease**: π¦ Pick the disease to be analyzed from the list of diseases in the selected dataset. | |
""") | |
st.subheader("β οΈ Warning:") | |
st.write(""" | |
- **π« Please avoid uploading non-frontal chest X-ray images**. Our model has been specifically trained on **frontal chest X-ray images**. | |
- This demo is intended for **π¬ research purposes only** and should **β not be used for medical diagnoses**. | |
- The modelβs responses may contain **π€ hallucinations or incorrect information**. Always consult a **π¨ββοΈ medical professional** for accurate diagnosis and advice. | |
""") | |
st.markdown("</div>", unsafe_allow_html=True) | |
# Run Inference Button | |
if st.button("Run Inference on Example", key="example"): | |
if image is None: | |
st.error("β Please select an example image first.") | |
else: | |
# Use the selected example's disease and definition for inference | |
disease_choice = example_diseases[0] if example_diseases else "" | |
definition = vindr_definitions.get(disease_choice, padchest_definitions.get(disease_choice, "")) | |
# Generate the prompt for the model | |
det_obj = f"{disease_choice} means {definition}." | |
st.write(f"**Definition:** {definition}") | |
prompt = f"Locate the phrases in the caption: {det_obj}." | |
prompt = f"<CAPTION_TO_PHRASE_GROUNDING>{prompt}" | |
# Prepare the image and input | |
np_image = np.array(image) | |
inputs = processor(text=[prompt], images=[np_image], return_tensors="pt", padding=True).to(DEVICE) | |
with st.spinner("Processing... β³"): | |
# Generate the result | |
generated_ids = model.generate(input_ids=inputs["input_ids"], pixel_values=inputs["pixel_values"], max_new_tokens=1024, num_beams=3) | |
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0] | |
predictions = processor.post_process_generation(generated_text, task="<CAPTION_TO_PHRASE_GROUNDING>", image_size=np_image.shape[:2]) | |
detection = sv.Detections.from_lmm(sv.LMM.FLORENCE_2, predictions, resolution_wh=np_image.shape[:2]) | |
# Annotate the image with bounding boxes and labels | |
bounding_box_annotator = sv.BoundingBoxAnnotator(color_lookup=sv.ColorLookup.INDEX) | |
label_annotator = sv.LabelAnnotator(color_lookup=sv.ColorLookup.INDEX) | |
image_with_predictions = bounding_box_annotator.annotate(np_image.copy(), detection) | |
image_with_predictions = label_annotator.annotate(image_with_predictions, detection) | |
annotated_image = Image.fromarray(image_with_predictions.astype(np.uint8)) | |
# Display the original and result images side by side | |
col1, col2 = st.columns([1, 1]) | |
with col1: | |
st.image(image, caption=f"Original Image: {selected_example}", width=400) | |
with col2: | |
st.image(annotated_image, caption="Inference Results πΌοΈ", width=400) | |
# Display the generated text | |
st.write("**Generated Text:**", generated_text) | |
# Upload Image section | |
st.subheader("π€ Upload Your Own Image") | |
col1, col2 = st.columns([1, 1]) | |
with col1: | |
dataset_choice = st.selectbox("Select Dataset π", options=list(dataset_options.keys())) | |
disease_options = list(dataset_options[dataset_choice].keys()) | |
with col2: | |
disease_choice = st.selectbox("Select Disease π¦ ", options=disease_options) | |
uploaded_file = st.file_uploader("Upload an Image", type=["png", "jpg", "jpeg"]) | |
# if uploaded_file: | |
# image = Image.open(uploaded_file).convert("RGB") | |
# image = apply_transform(image) # Ensure the uploaded image is transformed correctly | |
# st.image(image, caption="Uploaded Image", width=400) | |
# # Let user select dataset and disease dynamically | |
# disease_choice = disease_choice if disease_choice else example_diseases[0] | |
# # Get Definition Priority: Dataset -> User Input | |
# definition = vindr_definitions.get(disease_choice, padchest_definitions.get(disease_choice, "")) | |
# if not definition: | |
# definition = st.text_input("Enter Definition Manually π", value="") | |
col1, col2 = st.columns([1, 2]) | |
with col1: | |
# Handle file upload | |
if uploaded_file: | |
image = Image.open(uploaded_file).convert("RGB") | |
image = apply_transform(image) # Ensure the uploaded image is transformed correctly | |
st.image(image, caption="Uploaded Image", width=400) | |
# Let user select dataset and disease dynamically | |
disease_choice = disease_choice if disease_choice else example_diseases[0] | |
# Get Definition Priority: Dataset -> User Input | |
definition = vindr_definitions.get(disease_choice, padchest_definitions.get(disease_choice, "")) | |
if not definition: | |
definition = st.text_input("Enter Definition Manually π", value="") | |
with col2: | |
# Instructions and warnings | |
st.subheader("βοΈ Instructions to Get Started:") | |
st.write(""" | |
- **Run Inference**: Click the "Run Inference on Example" button to process the image and display the results. | |
- **Choose an Example**: π Select an example image from the dataset to view its associated diseases. | |
- **Upload Your Own Image**: π€ Upload an image of your choice to analyze it for diseases. | |
- **Select Dataset**: π Choose between available datasets (Vindr or PadChest) for disease information. | |
- **Select Disease**: π¦ Pick the disease to be analyzed from the list of diseases in the selected dataset. | |
""") | |
st.subheader("β οΈ Warning:") | |
st.write(""" | |
- **π« Please avoid uploading non-frontal chest X-ray images**. Our model has been specifically trained on **frontal chest X-ray images**. | |
- This demo is intended for **π¬ research purposes only** and should **β not be used for medical diagnoses**. | |
- The modelβs responses may contain **π€ hallucinations or incorrect information**. Always consult a **π¨ββοΈ medical professional** for accurate diagnosis and advice. | |
""") | |
# Run inference after upload | |
if st.button("Run Inference πββοΈ"): | |
if image is None: | |
st.error("β Please upload an image or select an example.") | |
else: | |
det_obj = f"{disease_choice} means {definition}." | |
st.write(f"**Definition:** {definition}") | |
# Construct Prompt with Disease Definition | |
prompt = f"Locate the phrases in the caption: {det_obj}." | |
prompt = f"<CAPTION_TO_PHRASE_GROUNDING>{prompt}" | |
np_image = np.array(image) | |
inputs = processor(text=[prompt], images=[np_image], return_tensors="pt", padding=True).to(DEVICE) | |
with st.spinner("Processing... β³"): | |
generated_ids = model.generate(input_ids=inputs["input_ids"], pixel_values=inputs["pixel_values"], max_new_tokens=1024, num_beams=3) | |
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0] | |
predictions = processor.post_process_generation(generated_text, task="<CAPTION_TO_PHRASE_GROUNDING>", image_size=np_image.shape[:2]) | |
detection = sv.Detections.from_lmm(sv.LMM.FLORENCE_2, predictions, resolution_wh=np_image.shape[:2]) | |
bounding_box_annotator = sv.BoundingBoxAnnotator(color_lookup=sv.ColorLookup.INDEX) | |
label_annotator = sv.LabelAnnotator(color_lookup=sv.ColorLookup.INDEX) | |
image_with_predictions = bounding_box_annotator.annotate(np_image.copy(), detection) | |
image_with_predictions = label_annotator.annotate(image_with_predictions, detection) | |
annotated_image = Image.fromarray(image_with_predictions.astype(np.uint8)) | |
# Create two columns to display the original and the results side by side | |
col1, col2 = st.columns([1, 1]) | |
# Left column for original image | |
with col1: | |
st.image(image, caption="Uploaded Image", width=400) | |
# Right column for result image | |
with col2: | |
st.image(annotated_image, caption="Inference Results πΌοΈ", width=400) | |
# Display the generated text | |
st.write("**Generated Text:**", generated_text) | |