File size: 5,361 Bytes
29ae6c8 e5e0d10 29ae6c8 e5e0d10 29ae6c8 e5e0d10 29ae6c8 e5e0d10 29ae6c8 e5e0d10 29ae6c8 e5e0d10 29ae6c8 e5e0d10 29ae6c8 e5e0d10 29ae6c8 e5e0d10 29ae6c8 e5e0d10 29ae6c8 e5e0d10 29ae6c8 e5e0d10 29ae6c8 e5e0d10 29ae6c8 e5e0d10 29ae6c8 e5e0d10 29ae6c8 e5e0d10 29ae6c8 e5e0d10 29ae6c8 e5e0d10 29ae6c8 e5e0d10 29ae6c8 e5e0d10 29ae6c8 e5e0d10 29ae6c8 e5e0d10 29ae6c8 e5e0d10 29ae6c8 e5e0d10 29ae6c8 e5e0d10 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
import gradio as gr
import torch
from transformers import AutoTokenizer, T5ForConditionalGeneration
import networkx as nx
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
import io
from sklearn.feature_extraction.text import TfidfVectorizer
from scipy.spatial import distance
class DiagramGenerator:
def __init__(self):
# Initialize device
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Load model
self.model_name = "t5-small"
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
self.model = T5ForConditionalGeneration.from_pretrained(self.model_name).to(self.device)
# Initialize vectorizer
self.vectorizer = TfidfVectorizer(stop_words='english')
# Style configurations
self.styles = {
"flowchart": {
"node_color": "lightblue",
"edge_color": "gray",
"node_size": 3000
},
"mindmap": {
"node_color": "lightgreen",
"edge_color": "darkgreen",
"node_size": 2500
},
"sequence": {
"node_color": "lightyellow",
"edge_color": "orange",
"node_size": 3500
},
"kga": {
"node_color": "lightcoral",
"edge_color": "darkred",
"node_size": 3000
}
}
def extract_components(self, text: str) -> list:
"""Extract components from text using T5 model."""
inputs = self.tokenizer(
text,
max_length=512,
truncation=True,
return_tensors="pt"
).to(self.device)
outputs = self.model.generate(
inputs['input_ids'],
num_beams=4,
max_length=512
)
decoded_output = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
return [comp.strip() for comp in decoded_output.split(",")]
def create_diagram(self, text: str, style: str = "flowchart"):
"""Create diagram from text with specified style."""
try:
# Extract components
components = self.extract_components(text)
if not components:
return None, "No components extracted from text."
# Create figure
plt.figure(figsize=(12, 8))
G = nx.DiGraph()
if style == "kga":
# Create KGA diagram
tfidf_matrix = self.vectorizer.fit_transform(components)
similarity_matrix = 1 - distance.squareform(
distance.pdist(tfidf_matrix.toarray(), metric='cosine')
)
# Add edges based on similarity
for i in range(len(components)):
for j in range(i + 1, len(components)):
if similarity_matrix[i][j] > 0.5:
G.add_edge(components[i], components[j])
G.add_edge(components[j], components[i])
else:
# Create sequential diagram
for i in range(len(components)-1):
G.add_edge(components[i], components[i+1])
# Draw diagram
pos = nx.spring_layout(G)
style_config = self.styles[style]
nx.draw_networkx_nodes(
G, pos,
node_color=style_config['node_color'],
node_size=style_config['node_size']
)
nx.draw_networkx_edges(
G, pos,
edge_color=style_config['edge_color'],
arrows=True if style != "kga" else False
)
nx.draw_networkx_labels(G, pos)
plt.title(f"{style.capitalize()} Diagram")
plt.axis('off')
# Save to buffer
buf = io.BytesIO()
plt.savefig(buf, format='png', bbox_inches='tight', dpi=100)
plt.close()
buf.seek(0)
return Image.open(buf), "Diagram generated successfully!"
except Exception as e:
return None, f"Error generating diagram: {str(e)}"
def create_gradio_interface():
generator = DiagramGenerator()
iface = gr.Interface(
fn=generator.create_diagram,
inputs=[
gr.Textbox(
label="Enter your diagram description",
placeholder="e.g., 'Create a knowledge graph for artificial intelligence concepts'",
lines=3
),
gr.Dropdown(
choices=list(generator.styles.keys()),
label="Diagram Style",
value="flowchart"
)
],
outputs=[
gr.Image(label="Generated Diagram", type="pil"),
gr.Textbox(label="Status")
],
title="AI-Powered Diagram Generator",
description="""
Create various types of diagrams from text descriptions.
Supports flowcharts, mindmaps, sequence diagrams, and knowledge graphs.
"""
)
return iface
if __name__ == "__main__":
iface = create_gradio_interface()
iface.launch() |