Spaces:
Sleeping
Sleeping
File size: 8,633 Bytes
5cb1a46 21011da 5cb1a46 21011da 5cb1a46 12499f7 5cb1a46 1608dda 5cb1a46 21011da 0b8107d ff9efc0 feca41c 5cb1a46 21011da 5cb1a46 64c5058 06e74c7 64c5058 11a461e 5cb1a46 11a461e 5cb1a46 1608dda 64c5058 11a461e 64c5058 1608dda 64c5058 11a461e 5cb1a46 64c5058 5cb1a46 64c5058 5cb1a46 64c5058 5cb1a46 64c5058 5cb1a46 64c5058 5cb1a46 5ca8728 5cb1a46 1e87d13 5cb1a46 c27eb57 64c5058 1608dda 588728b 1608dda 11a461e 1608dda 64c5058 5cb1a46 64c5058 5cb1a46 c27eb57 5cb1a46 21011da 662feb4 2461462 662feb4 21011da 64c5058 2ffb657 21011da 5cb1a46 b6cd364 5cb1a46 8e25bbd 5cb1a46 21011da 76bdd82 11a461e 21011da 5cb1a46 21011da c44a196 21011da e55794f 21011da b6cd364 21011da 5cb1a46 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
import asyncio
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
import requests
import pandas as pd
import json
import os,datetime
import pandas as pd
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.preprocessing import LabelEncoder
from sklearn.utils import resample
from xgboost import XGBClassifier
from sklearn.metrics import accuracy_score, classification_report
from joblib import dump, load
import numpy as np
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
def train_the_model():
data = pd.read_csv("trainer_data.csv")
print(data["customer_name"].count())
data = pd.read_csv("trainer_data_balanced.csv")
print(data["customer_name"].count())
# Select columns
selected_columns = ['customer_name', 'customer_address', 'customer_phone_no',
'weight','cod','pickup_address','client_number','destination_city',
'status_name']
# Handling missing values
#data_filled = data[selected_columns].fillna('Missing')
data_filled = data[selected_columns].dropna()
# Encoding categorical variables
encoders = {col: LabelEncoder() for col in selected_columns if data_filled[col].dtype == 'object'}
for col, encoder in encoders.items():
data_filled[col] = encoder.fit_transform(data_filled[col])
# Splitting the dataset
X = data_filled.drop('status_name', axis=1)
y = data_filled['status_name']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Parameters to use for the model
# Parameters to use for the model
"""params = {
'colsample_bytree': 0.3,
'learning_rate': 0.6,
'max_depth': 6,
'n_estimators': 100,
'subsample': 0.9,
'use_label_encoder': False,
'eval_metric': 'logloss'
}"""
params = {
'colsample_bytree': 0.9,
'learning_rate': 0.1,
'max_depth': 30,
'n_estimators': 500,
'subsample': 0.9,
'use_label_encoder': False,
'eval_metric': 'logloss'
}
# Initialize the classifier with the specified parameters
xgb = XGBClassifier(**params)
# Train the model
xgb.fit(X_train, y_train)
# Predict on the test set
y_pred = xgb.predict(X_test)
y_pred_proba = xgb.predict_proba(X_test)
# Evaluate the model
accuracy = accuracy_score(y_test, y_pred)
classification_rep = classification_report(y_test, y_pred)
# Save the model
model_filename = 'transexpress_xgb_model.joblib'
dump(xgb, model_filename)
# Save the encoders
encoders_filename = 'transexpress_encoders.joblib'
dump(encoders, encoders_filename)
return accuracy,classification_rep,"Model trained with new data"
@app.get("/trigger_the_data_fecher")
async def your_continuous_function(page: str,paginate: str):
print("data fetcher running.....")
# Initialize an empty DataFrame to store the combined data
combined_df = pd.DataFrame()
# Update the payload for each page
url = "https://report.transexpress.lk/api/orders/delivery-success-rate/return-to-client-orders?page="+page+"&per_page="+paginate
payload = {}
headers = {
'Cookie': 'development_trans_express_session=NaFDGzh5WQCFwiortxA6WEFuBjsAG9GHIQrbKZ8B'
}
response = requests.request("GET", url, headers=headers, data=payload)
# Sample JSON response
json_response = response.json()
# Extracting 'data' for conversion
data = json_response["return_to_client_orders"]['data']
data_count = len(data)
df = pd.json_normalize(data)
df['status_name'] = df['status_name'].replace('Partially Delivered', 'Delivered')
df['status_name'] = df['status_name'].replace('Received by Client', 'Returned to Client')
print("data collected from page : "+page)
#return "done"
try:
file_path = 'trainer_data.csv' # Replace with your file path
source_csv = pd.read_csv(file_path)
new_data = df
combined_df_final = pd.concat([source_csv,new_data], ignore_index=True)
combined_df_final.to_csv("trainer_data.csv")
print("data added")
except:
df.to_csv("trainer_data.csv")
print("data created")
# Load the dataset
file_path = 'trainer_data.csv' # Update to the correct file path
data = pd.read_csv(file_path)
# Analyze class distribution
class_distribution = data['status_name'].value_counts()
print("Class Distribution before balancing:\n", class_distribution)
# Get the size of the largest class to match other classes' sizes
max_class_size = class_distribution.max()
# Oversampling
oversampled_data = pd.DataFrame()
for class_name, group in data.groupby('status_name'):
oversampled_group = resample(group,
replace=True, # Sample with replacement
n_samples=max_class_size, # to match majority class
random_state=123) # for reproducibility
oversampled_data = pd.concat([oversampled_data, oversampled_group], axis=0)
# Verify new class distribution
print("Class Distribution after oversampling:\n", oversampled_data['status_name'].value_counts())
# Save the balanced dataset if needed
oversampled_data.to_csv('trainer_data_balanced.csv', index=False)
accuracy,classification_rep,message = train_the_model()
return {"message":message,"page_number":page,"data_count":data_count,"accuracy":accuracy,"classification_rep":classification_rep}
@app.get("/get_latest_model_updated_time")
async def model_updated_time():
try:
m_time_encoder = os.path.getmtime('transexpress_encoders.joblib')
m_time_model = os.path.getmtime('transexpress_xgb_model.joblib')
return {"base model created time ":datetime.datetime.fromtimestamp(m_time_encoder),
"last model updated time":datetime.datetime.fromtimestamp(m_time_model)}
except:
return {"no model found so first trained the model using data fecther"}
# Endpoint for making predictions
@app.post("/predict")
def predict(
date : str,
customer_name: str,
customer_address: str,
customer_phone: str,
weight: float,
cod: int,
pickup_address: str,
client_number:str,
destination_city:str
):
try:
# Load your trained model and encoders
xgb_model = load('transexpress_xgb_model.joblib')
encoders = load('transexpress_encoders.joblib')
except:
return {"no model found so first trained the model using data fecther"}
# Function to handle unseen labels during encoding
def safe_transform(encoder, column):
classes = encoder.classes_
return [encoder.transform([x])[0] if x in classes else -1 for x in column]
# Convert input data to DataFrame
input_data = {
'customer_name': customer_name,
'customer_address': customer_address,
'customer_phone_no': customer_phone,
'weight': float(weight),
'cod': int(cod),
'pickup_address':pickup_address,
'client_number':client_number,
'destination_city':destination_city
}
input_df = pd.DataFrame([input_data])
# Encode categorical variables using the same encoders used during training
for col in input_df.columns:
if col in encoders:
input_df[col] = safe_transform(encoders[col], input_df[col])
# Predict and obtain probabilities
pred = xgb_model.predict(input_df)
pred_proba = xgb_model.predict_proba(input_df)
# Output
predicted_status = "Unknown" if pred[0] == -1 else encoders['status_name'].inverse_transform([pred])[0]
probability = pred_proba[0][pred[0]] * 100 if pred[0] != -1 else "Unknown"
print(predicted_status)
if predicted_status == "Returned to Client":
probability = 100 - probability
return {"Probability": round(probability,2)} |