anyantudre's picture
moved from training repo to inference
caa56d6
'''
# author: Zhiyuan Yan
# email: [email protected]
# date: 2023-03-30
The code is designed for FWA and mainly modified from the below link:
https://github.com/yuezunli/DSP-FWA
'''
import os
import sys
import json
import pickle
import time
import dlib
import numpy as np
from copy import deepcopy
import cv2
import random
from PIL import Image
from skimage.util import random_noise
from skimage.draw import polygon
from scipy import linalg
import heapq as hq
import albumentations as A
import torch
from torch.autograd import Variable
from torch.utils import data
from torchvision import transforms as T
import torchvision
from dataset.utils.face_blend import *
from dataset.utils.face_align import get_align_mat_new
from dataset.utils.color_transfer import color_transfer
from dataset.utils.faceswap_utils import blendImages as alpha_blend_fea
from dataset.utils.faceswap_utils import AlphaBlend as alpha_blend
from dataset.utils.face_aug import aug_one_im, change_res
from dataset.utils.image_ae import get_pretraiend_ae
from dataset.utils.warp import warp_mask
from dataset.utils import faceswap
from scipy.ndimage.filters import gaussian_filter
from skimage.transform import AffineTransform, warp
from dataset.abstract_dataset import DeepfakeAbstractBaseDataset
# Define face detector and predictor models
face_detector = dlib.get_frontal_face_detector()
predictor_path = 'preprocessing/dlib_tools/shape_predictor_81_face_landmarks.dat'
face_predictor = dlib.shape_predictor(predictor_path)
mean_face_x = np.array([
0.000213256, 0.0752622, 0.18113, 0.29077, 0.393397, 0.586856, 0.689483, 0.799124,
0.904991, 0.98004, 0.490127, 0.490127, 0.490127, 0.490127, 0.36688, 0.426036,
0.490127, 0.554217, 0.613373, 0.121737, 0.187122, 0.265825, 0.334606, 0.260918,
0.182743, 0.645647, 0.714428, 0.793132, 0.858516, 0.79751, 0.719335, 0.254149,
0.340985, 0.428858, 0.490127, 0.551395, 0.639268, 0.726104, 0.642159, 0.556721,
0.490127, 0.423532, 0.338094, 0.290379, 0.428096, 0.490127, 0.552157, 0.689874,
0.553364, 0.490127, 0.42689])
mean_face_y = np.array([
0.106454, 0.038915, 0.0187482, 0.0344891, 0.0773906, 0.0773906, 0.0344891,
0.0187482, 0.038915, 0.106454, 0.203352, 0.307009, 0.409805, 0.515625, 0.587326,
0.609345, 0.628106, 0.609345, 0.587326, 0.216423, 0.178758, 0.179852, 0.231733,
0.245099, 0.244077, 0.231733, 0.179852, 0.178758, 0.216423, 0.244077, 0.245099,
0.780233, 0.745405, 0.727388, 0.742578, 0.727388, 0.745405, 0.780233, 0.864805,
0.902192, 0.909281, 0.902192, 0.864805, 0.784792, 0.778746, 0.785343, 0.778746,
0.784792, 0.824182, 0.831803, 0.824182])
landmarks_2D = np.stack([mean_face_x, mean_face_y], axis=1)
class RandomDownScale(A.core.transforms_interface.ImageOnlyTransform):
def apply(self,img,**params):
return self.randomdownscale(img)
def randomdownscale(self,img):
keep_ratio=True
keep_input_shape=True
H,W,C=img.shape
ratio_list=[2,4]
r=ratio_list[np.random.randint(len(ratio_list))]
img_ds=cv2.resize(img,(int(W/r),int(H/r)),interpolation=cv2.INTER_NEAREST)
if keep_input_shape:
img_ds=cv2.resize(img_ds,(W,H),interpolation=cv2.INTER_LINEAR)
return img_ds
def umeyama( src, dst, estimate_scale ):
"""Estimate N-D similarity transformation with or without scaling.
Parameters
----------
src : (M, N) array
Source coordinates.
dst : (M, N) array
Destination coordinates.
estimate_scale : bool
Whether to estimate scaling factor.
Returns
-------
T : (N + 1, N + 1)
The homogeneous similarity transformation matrix. The matrix contains
NaN values only if the problem is not well-conditioned.
References
----------
.. [1] "Least-squares estimation of transformation parameters between two
point patterns", Shinji Umeyama, PAMI 1991, DOI: 10.1109/34.88573
"""
num = src.shape[0]
dim = src.shape[1]
# Compute mean of src and dst.
src_mean = src.mean(axis=0)
dst_mean = dst.mean(axis=0)
# Subtract mean from src and dst.
src_demean = src - src_mean
dst_demean = dst - dst_mean
# Eq. (38).
A = np.dot(dst_demean.T, src_demean) / num
# Eq. (39).
d = np.ones((dim,), dtype=np.double)
if np.linalg.det(A) < 0:
d[dim - 1] = -1
T = np.eye(dim + 1, dtype=np.double)
U, S, V = np.linalg.svd(A)
# Eq. (40) and (43).
rank = np.linalg.matrix_rank(A)
if rank == 0:
return np.nan * T
elif rank == dim - 1:
if np.linalg.det(U) * np.linalg.det(V) > 0:
T[:dim, :dim] = np.dot(U, V)
else:
s = d[dim - 1]
d[dim - 1] = -1
T[:dim, :dim] = np.dot(U, np.dot(np.diag(d), V))
d[dim - 1] = s
else:
T[:dim, :dim] = np.dot(U, np.dot(np.diag(d), V.T))
if estimate_scale:
# Eq. (41) and (42).
scale = 1.0 / src_demean.var(axis=0).sum() * np.dot(S, d)
else:
scale = 1.0
T[:dim, dim] = dst_mean - scale * np.dot(T[:dim, :dim], src_mean.T)
T[:dim, :dim] *= scale
return T
def shape_to_np(shape, dtype="int"):
# initialize the list of (x, y)-coordinates
coords = np.zeros((68, 2), dtype=dtype)
# loop over the 68 facial landmarks and convert them
# to a 2-tuple of (x, y)-coordinates
for i in range(0, 68):
coords[i] = (shape.part(i).x, shape.part(i).y)
# return the list of (x, y)-coordinates
return coords
from skimage.transform import AffineTransform, warp
def get_warped_face(face, landmarks, tform):
"""
Apply the given affine transformation to the face and landmarks.
Args:
face (np.ndarray): The face image to be transformed.
landmarks (np.ndarray): The facial landmarks to be transformed.
tform (AffineTransform): The transformation to apply.
Returns:
warped_face (np.ndarray): The transformed face image.
warped_landmarks (np.ndarray): The transformed facial landmarks.
"""
# Apply the transformation to the face
warped_face = warp(face, tform.inverse, output_shape=face.shape)
warped_face = (warped_face * 255).astype(np.uint8)
# Apply the transformation to the landmarks
warped_landmarks = tform.inverse(landmarks)
return warped_face, warped_landmarks
def warp_face_within_landmarks(face, landmarks, tform):
"""
Apply the given affine transformation to the face and landmarks,
and retain only the area within the landmarks.
Args:
face (np.ndarray): The face image to be transformed.
landmarks (np.ndarray): The facial landmarks to be transformed.
tform (AffineTransform): The transformation to apply.
Returns:
warped_face (np.ndarray): The transformed face image.
warped_landmarks (np.ndarray): The transformed facial landmarks.
"""
# Apply the transformation to the face
warped_face = warp(face, tform.inverse, output_shape=face.shape)
warped_face = (warped_face * 255).astype(np.uint8)
# Apply the transformation to the landmarks
warped_landmarks = np.linalg.inv(landmarks)
# Generate a mask based on the landmarks
rr, cc = polygon(warped_landmarks[:, 1], warped_landmarks[:, 0])
mask = np.zeros_like(warped_face, dtype=np.uint8)
mask[rr, cc] = 1
# Apply the mask to the face
warped_face *= mask
return warped_face, warped_landmarks
def get_2d_aligned_face(image, mat, size, padding=[0, 0]):
mat = mat * size
mat[0, 2] += padding[0]
mat[1, 2] += padding[1]
return cv2.warpAffine(image, mat, (size + 2 * padding[0], size + 2 * padding[1]))
def get_2d_aligned_landmarks(face_cache, aligned_face_size=256, padding=(0, 0)):
mat, points = face_cache
# Mapping landmarks to aligned face
pred_ = np.concatenate([points, np.ones((points.shape[0], 1))], axis=-1)
pred_ = np.transpose(pred_)
mat = mat * aligned_face_size
mat[0, 2] += padding[0]
mat[1, 2] += padding[1]
aligned_shape = np.dot(mat, pred_)
aligned_shape = np.transpose(aligned_shape[:2, :])
return aligned_shape
def get_aligned_face_and_landmarks(im, face_cache, aligned_face_size = 256, padding=(0, 0)):
"""
get all aligned faces and landmarks of all images
:param imgs: origin images
:param fa: face_alignment package
:return:
"""
aligned_cur_shapes = []
aligned_cur_im = []
for mat, points in face_cache:
# Get transform matrix
aligned_face = get_2d_aligned_face(im, mat, aligned_face_size, padding)
aligned_shape = get_2d_aligned_landmarks([mat, points], aligned_face_size, padding)
aligned_cur_shapes.append(aligned_shape)
aligned_cur_im.append(aligned_face)
return aligned_cur_im, aligned_cur_shapes
def face_warp(im, face, trans_matrix, size, padding):
new_face = np.clip(face, 0, 255).astype(im.dtype)
image_size = im.shape[1], im.shape[0]
tmp_matrix = trans_matrix * size
delta_matrix = np.array([[0., 0., padding[0]*1.0], [0., 0., padding[1]*1.0]])
tmp_matrix = tmp_matrix + delta_matrix
# Warp the new face onto a blank canvas
warped_face = np.zeros_like(im)
cv2.warpAffine(new_face, tmp_matrix, image_size, warped_face, cv2.WARP_INVERSE_MAP,
cv2.BORDER_TRANSPARENT)
# Create a mask of the warped face
mask = (warped_face > 0).astype(np.uint8)
# Blend the warped face with the original image
new_image = im * (1 - mask) + warped_face * mask
return new_image, mask
def get_face_loc(im, face_detector, scale=0):
""" get face locations, color order of images is rgb """
faces = face_detector(np.uint8(im), scale)
face_list = []
if faces is not None or len(faces) > 0:
for i, d in enumerate(faces):
try:
face_list.append([d.left(), d.top(), d.right(), d.bottom()])
except:
face_list.append([d.rect.left(), d.rect.top(), d.rect.right(), d.rect.bottom()])
return face_list
def align(im, face_detector, lmark_predictor, scale=0):
# This version we handle all faces in view
# channel order rgb
im = np.uint8(im)
faces = face_detector(im, scale)
face_list = []
if faces is not None or len(faces) > 0:
for pred in faces:
try:
points = shape_to_np(lmark_predictor(im, pred))
except:
points = shape_to_np(lmark_predictor(im, pred.rect))
trans_matrix = umeyama(points[17:], landmarks_2D, True)[0:2]
face_list.append([trans_matrix, points])
return face_list
class FWABlendDataset(DeepfakeAbstractBaseDataset):
def __init__(self, config=None):
super().__init__(config, mode='train')
self.transforms = T.Compose([
T.ToTensor(),
T.Normalize(mean=config['mean'],
std=config['std'])
])
self.resolution = config['resolution']
def blended_aug(self, im):
transform = A.Compose([
A.RGBShift((-20,20),(-20,20),(-20,20),p=0.3),
A.HueSaturationValue(hue_shift_limit=(-0.3,0.3), sat_shift_limit=(-0.3,0.3), val_shift_limit=(-0.3,0.3), p=0.3),
A.RandomBrightnessContrast(brightness_limit=(-0.3,0.3), contrast_limit=(-0.3,0.3), p=0.3),
A.ImageCompression(quality_lower=40, quality_upper=100,p=0.5)
])
# Apply transformations
im_aug = transform(image=im)
return im_aug['image']
def data_aug(self, im):
"""
Apply data augmentation on the input image using albumentations.
"""
transform = A.Compose([
A.Compose([
A.RGBShift((-20,20),(-20,20),(-20,20),p=0.3),
A.HueSaturationValue(hue_shift_limit=(-0.3,0.3), sat_shift_limit=(-0.3,0.3), val_shift_limit=(-0.3,0.3), p=1),
A.RandomBrightnessContrast(brightness_limit=(-0.1,0.1), contrast_limit=(-0.1,0.1), p=1),
],p=1),
A.OneOf([
RandomDownScale(p=1),
A.Sharpen(alpha=(0.2, 0.5), lightness=(0.5, 1.0), p=1),
],p=1),
], p=1.)
# Apply transformations
im_aug = transform(image=im)
return im_aug['image']
def blend_images(self, img_path):
#im = cv2.imread(img_path)
im = np.array(self.load_rgb(img_path))
# Get the alignment of the head
face_cache = align(im, face_detector, face_predictor)
# Get the aligned face and landmarks
aligned_im_head, aligned_shape = get_aligned_face_and_landmarks(im, face_cache)
# If no faces were detected in the image, return None (or any suitable value)
if len(aligned_im_head) == 0 or len(aligned_shape) == 0:
return None, None
aligned_im_head = aligned_im_head[0]
aligned_shape = aligned_shape[0]
# Apply transformations to the face
scale_factor = random.choice([0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8])
scaled_face = cv2.resize(aligned_im_head, (0, 0), fx=scale_factor, fy=scale_factor)
# Apply Gaussian blur to the scaled face
blurred_face = cv2.GaussianBlur(scaled_face, (5, 5), 0)
# Resize the processed image back to the original size
resized_face = cv2.resize(blurred_face, (aligned_im_head.shape[1], aligned_im_head.shape[0]))
# Generate a random facial mask
mask = get_mask(aligned_shape.astype(np.float32), resized_face, std=20, deform=True)
# Apply the mask to the resized face
masked_face = cv2.bitwise_and(resized_face, resized_face, mask=mask)
# do aug before warp
im = np.array(self.blended_aug(im))
# Warp the face back to the original image
im, masked_face = face_warp(im, masked_face, face_cache[0][0], self.resolution, [0, 0])
shape = get_2d_aligned_landmarks(face_cache[0], self.resolution, [0, 0])
return im, masked_face
def process_images(self, img_path, index):
"""
Process an image following the data generation pipeline.
"""
blended_im, mask = self.blend_images(img_path)
# Prepare images and titles for the combined image
imid_fg = np.array(self.load_rgb(img_path))
imid_fg = np.array(self.data_aug(imid_fg))
if blended_im is None or mask is None:
return imid_fg, None
# images = [
# imid_fg,
# np.where(mask.astype(np.uint8)>0, 255, 0),
# blended_im,
# ]
# titles = ["Image", "Mask", "Blended Image"]
# # Save the combined image
# os.makedirs('fwa_examples_2', exist_ok=True)
# self.save_combined_image(images, titles, index, f'fwa_examples_2/combined_image_{index}.png')
return imid_fg, blended_im
def post_proc(self, img):
'''
if self.mode == 'train':
#if np.random.rand() < 0.5:
# img = random_add_noise(img)
#add_gaussian_noise(img)
if np.random.rand() < 0.5:
#img, _ = change_res(img)
img = gaussian_blur(img)
'''
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
im_aug = self.blended_aug(img)
im_aug = Image.fromarray(np.uint8(img))
im_aug = self.transforms(im_aug)
return im_aug
@staticmethod
def save_combined_image(images, titles, index, save_path):
"""
Save the combined image with titles for each single image.
Args:
images (List[np.ndarray]): List of images to be combined.
titles (List[str]): List of titles for each image.
index (int): Index of the image.
save_path (str): Path to save the combined image.
"""
# Determine the maximum height and width among the images
max_height = max(image.shape[0] for image in images)
max_width = max(image.shape[1] for image in images)
# Create the canvas
canvas = np.zeros((max_height * len(images), max_width, 3), dtype=np.uint8)
# Place the images and titles on the canvas
current_height = 0
for image, title in zip(images, titles):
height, width = image.shape[:2]
# Check if image has a third dimension (color channels)
if image.ndim == 2:
# If not, add a third dimension
image = np.tile(image[..., None], (1, 1, 3))
canvas[current_height : current_height + height, :width] = image
cv2.putText(
canvas, title, (10, current_height + 30),
cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2
)
current_height += height
# Save the combined image
cv2.imwrite(save_path, canvas)
def __getitem__(self, index):
"""
Get an item from the dataset by index.
"""
one_img_path = self.data_dict['image'][index]
try:
label = 1 if one_img_path.split('/')[6]=='manipulated_sequences' else 0
except Exception as e:
label = 1 if one_img_path.split('\\')[6] == 'manipulated_sequences' else 0
blend_label = 1
imid, manipulate_img = self.process_images(one_img_path, index)
if manipulate_img is None:
manipulate_img = deepcopy(imid)
blend_label = label
manipulate_img = self.post_proc(manipulate_img)
imid = self.post_proc(imid)
# blend data
fake_data_tuple = (manipulate_img, blend_label)
# original data
real_data_tuple = (imid, label)
return fake_data_tuple, real_data_tuple
@staticmethod
def collate_fn(batch):
"""
Collates batches of data and shuffles the images.
"""
# Unzip the batch
fake_data, real_data = zip(*batch)
# Unzip the fake and real data
fake_images, fake_labels = zip(*fake_data)
real_images, real_labels = zip(*real_data)
# Combine fake and real data
images = torch.stack(fake_images + real_images)
labels = torch.tensor(fake_labels + real_labels)
# Combine images, boundaries, and labels into tuples
combined_data = list(zip(images, labels))
# Shuffle the combined data
random.shuffle(combined_data)
# Unzip the shuffled data
images, labels = zip(*combined_data)
# Create the data dictionary
data_dict = {
'image': torch.stack(images),
'label': torch.tensor(labels),
'mask': None,
'landmark': None # Add your landmark data if available
}
return data_dict