|
|
|
|
|
|
|
|
|
|
|
import abc
|
|
import torch
|
|
import torch.nn as nn
|
|
from typing import Union
|
|
|
|
class AbstractDetector(nn.Module, metaclass=abc.ABCMeta):
|
|
"""
|
|
All deepfake detectors should subclass this class.
|
|
"""
|
|
def __init__(self, config=None, load_param: Union[bool, str] = False):
|
|
"""
|
|
config: (dict)
|
|
configurations for the model
|
|
load_param: (False | True | Path(str))
|
|
False Do not read; True Read the default path; Path Read the required path
|
|
"""
|
|
super().__init__()
|
|
|
|
@abc.abstractmethod
|
|
def features(self, data_dict: dict) -> torch.tensor:
|
|
"""
|
|
Returns the features from the backbone given the input data.
|
|
"""
|
|
pass
|
|
|
|
@abc.abstractmethod
|
|
def forward(self, data_dict: dict, inference=False) -> dict:
|
|
"""
|
|
Forward pass through the model, returning the prediction dictionary.
|
|
"""
|
|
pass
|
|
|
|
@abc.abstractmethod
|
|
def classifier(self, features: torch.tensor) -> torch.tensor:
|
|
"""
|
|
Classifies the features into classes.
|
|
"""
|
|
pass
|
|
|
|
@abc.abstractmethod
|
|
def build_backbone(self, config):
|
|
"""
|
|
Builds the backbone of the model.
|
|
"""
|
|
pass
|
|
|
|
@abc.abstractmethod
|
|
def build_loss(self, config):
|
|
"""
|
|
Builds the loss function for the model.
|
|
"""
|
|
pass
|
|
|
|
@abc.abstractmethod
|
|
def get_losses(self, data_dict: dict, pred_dict: dict) -> dict:
|
|
"""
|
|
Returns the losses for the model.
|
|
"""
|
|
pass
|
|
|
|
@abc.abstractmethod
|
|
def get_train_metrics(self, data_dict: dict, pred_dict: dict) -> dict:
|
|
"""
|
|
Returns the training metrics for the model.
|
|
"""
|
|
pass
|
|
|