|
import streamlit as st |
|
import google.generativeai as genai |
|
import requests |
|
import subprocess |
|
import os |
|
import pandas as pd |
|
import numpy as np |
|
from sklearn.model_selection import train_test_split |
|
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier |
|
from sklearn.svm import SVC |
|
from sklearn.neural_network import MLPClassifier |
|
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score |
|
import torch |
|
import torch.nn as nn |
|
import torch.optim as optim |
|
from transformers import AutoTokenizer, AutoModel, pipeline, GPT2LMHeadModel, GPT2Tokenizer |
|
import ast |
|
import networkx as nx |
|
import matplotlib.pyplot as plt |
|
import re |
|
import javalang |
|
import clang.cindex |
|
import radon.metrics as radon_metrics |
|
import radon.complexity as radon_complexity |
|
import black |
|
import isort |
|
import autopep8 |
|
from typing import List, Dict, Any |
|
import joblib |
|
from fastapi import FastAPI |
|
from pydantic import BaseModel |
|
import uvicorn |
|
|
|
|
|
genai.configure(api_key=st.secrets["GOOGLE_API_KEY"]) |
|
|
|
|
|
generation_config = { |
|
"temperature": 0.7, |
|
"top_p": 0.9, |
|
"top_k": 40, |
|
"max_output_tokens": 32768, |
|
} |
|
|
|
model = genai.GenerativeModel( |
|
model_name="gemini-1.5-pro", |
|
generation_config=generation_config, |
|
system_instruction=""" |
|
You are Ath, an extremely advanced code assistant with deep expertise in AI, machine learning, software engineering, and multiple programming languages. You provide cutting-edge, optimized, and secure code solutions across various domains. Use your vast knowledge to generate high-quality code, perform advanced analyses, and offer insightful optimizations. Adapt your language and explanations based on the user's expertise level. Incorporate the latest advancements in AI and software development to provide state-of-the-art solutions. |
|
""" |
|
) |
|
chat_session = model.start_chat(history=[]) |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("microsoft/codebert-base") |
|
codebert_model = AutoModel.from_pretrained("microsoft/codebert-base") |
|
code_generation_model = pipeline("text-generation", model="EleutherAI/gpt-neo-2.7B") |
|
|
|
|
|
gpt2_model = GPT2LMHeadModel.from_pretrained("gpt2-large") |
|
gpt2_tokenizer = GPT2Tokenizer.from_pretrained("gpt2-large") |
|
|
|
class AdvancedCodeImprovement(nn.Module): |
|
def __init__(self, input_dim): |
|
super(AdvancedCodeImprovement, self).__init__() |
|
self.lstm = nn.LSTM(input_dim, 512, num_layers=2, batch_first=True, bidirectional=True) |
|
self.attention = nn.MultiheadAttention(1024, 8) |
|
self.fc1 = nn.Linear(1024, 512) |
|
self.fc2 = nn.Linear(512, 256) |
|
self.fc3 = nn.Linear(256, 128) |
|
self.fc4 = nn.Linear(128, 64) |
|
self.fc5 = nn.Linear(64, 32) |
|
self.fc6 = nn.Linear(32, 8) |
|
|
|
def forward(self, x): |
|
x, _ = self.lstm(x) |
|
x, _ = self.attention(x, x, x) |
|
x = x.mean(dim=1) |
|
x = torch.relu(self.fc1(x)) |
|
x = torch.relu(self.fc2(x)) |
|
x = torch.relu(self.fc3(x)) |
|
x = torch.relu(self.fc4(x)) |
|
x = torch.relu(self.fc5(x)) |
|
return torch.sigmoid(self.fc6(x)) |
|
|
|
code_improvement_model = AdvancedCodeImprovement(768) |
|
optimizer = optim.Adam(code_improvement_model.parameters()) |
|
criterion = nn.BCELoss() |
|
|
|
|
|
if os.path.exists("code_improvement_model.pth"): |
|
code_improvement_model.load_state_dict(torch.load("code_improvement_model.pth")) |
|
code_improvement_model.eval() |
|
|
|
def generate_response(user_input: str) -> str: |
|
try: |
|
response = chat_session.send_message(user_input) |
|
return response.text |
|
except Exception as e: |
|
return f"Error in generating response: {str(e)}" |
|
|
|
def detect_language(code: str) -> str: |
|
|
|
patterns = { |
|
'python': r'\b(def|class|import|from|if\s+__name__\s*==\s*[\'"]__main__[\'"])\b', |
|
'javascript': r'\b(function|var|let|const|=>|document\.getElementById)\b', |
|
'java': r'\b(public\s+class|private|protected|package|import\s+java)\b', |
|
'c++': r'\b(#include\s*<|using\s+namespace|template\s*<|std::)', |
|
'ruby': r'\b(def|class|module|require|attr_accessor)\b', |
|
'go': r'\b(func|package\s+main|import\s*\(|fmt\.Println)\b', |
|
'rust': r'\b(fn|let\s+mut|impl|pub\s+struct|use\s+std)\b', |
|
'typescript': r'\b(interface|type|namespace|readonly|abstract\s+class)\b', |
|
} |
|
|
|
for lang, pattern in patterns.items(): |
|
if re.search(pattern, code): |
|
return lang |
|
return 'unknown' |
|
|
|
def validate_and_fix_code(code: str, language: str) -> tuple[str, str]: |
|
if language == 'python': |
|
try: |
|
fixed_code = autopep8.fix_code(code) |
|
fixed_code = isort.SortImports(file_contents=fixed_code).output |
|
fixed_code = black.format_str(fixed_code, mode=black.FileMode()) |
|
return fixed_code, "" |
|
except Exception as e: |
|
return code, f"Error in fixing Python code: {str(e)}" |
|
elif language == 'javascript': |
|
|
|
return code, "" |
|
elif language == 'java': |
|
|
|
return code, "" |
|
elif language == 'c++': |
|
|
|
return code, "" |
|
else: |
|
return code, "" |
|
|
|
def optimize_code(code: str) -> tuple[str, str]: |
|
language = detect_language(code) |
|
fixed_code, fix_error = validate_and_fix_code(code, language) |
|
|
|
if fix_error: |
|
return fixed_code, fix_error |
|
|
|
if language == 'python': |
|
try: |
|
tree = ast.parse(fixed_code) |
|
|
|
optimizer = PythonCodeOptimizer() |
|
optimized_tree = optimizer.visit(tree) |
|
optimized_code = ast.unparse(optimized_tree) |
|
except SyntaxError as e: |
|
return fixed_code, f"SyntaxError: {str(e)}" |
|
elif language == 'java': |
|
try: |
|
tree = javalang.parse.parse(fixed_code) |
|
|
|
optimizer = JavaCodeOptimizer() |
|
optimized_code = optimizer.optimize(tree) |
|
except javalang.parser.JavaSyntaxError as e: |
|
return fixed_code, f"JavaSyntaxError: {str(e)}" |
|
elif language == 'c++': |
|
try: |
|
index = clang.cindex.Index.create() |
|
tu = index.parse('temp.cpp', args=['-std=c++14'], unsaved_files=[('temp.cpp', fixed_code)]) |
|
|
|
optimizer = CppCodeOptimizer() |
|
optimized_code = optimizer.optimize(tu) |
|
except Exception as e: |
|
return fixed_code, f"C++ Parsing Error: {str(e)}" |
|
else: |
|
optimized_code = fixed_code |
|
|
|
|
|
lint_results = run_linter(optimized_code, language) |
|
|
|
return optimized_code, lint_results |
|
|
|
def run_linter(code: str, language: str) -> str: |
|
if language == 'python': |
|
with open("temp_code.py", "w") as file: |
|
file.write(code) |
|
result = subprocess.run(["pylint", "temp_code.py"], capture_output=True, text=True) |
|
os.remove("temp_code.py") |
|
return result.stdout |
|
elif language == 'javascript': |
|
|
|
return "JavaScript linting not implemented" |
|
elif language == 'java': |
|
|
|
return "Java linting not implemented" |
|
elif language == 'c++': |
|
|
|
return "C++ linting not implemented" |
|
else: |
|
return "Linting not available for the detected language" |
|
|
|
def fetch_from_github(query: str) -> List[Dict[str, Any]]: |
|
headers = {"Authorization": f"token {st.secrets['GITHUB_TOKEN']}"} |
|
response = requests.get(f"https://api.github.com/search/code?q={query}", headers=headers) |
|
if response.status_code == 200: |
|
return response.json()['items'][:5] |
|
return [] |
|
|
|
def analyze_code_quality(code: str) -> Dict[str, float]: |
|
inputs = tokenizer(code, return_tensors="pt", truncation=True, max_length=512, padding="max_length") |
|
|
|
with torch.no_grad(): |
|
outputs = codebert_model(**inputs) |
|
|
|
cls_embedding = outputs.last_hidden_state[:, 0, :] |
|
predictions = code_improvement_model(cls_embedding) |
|
|
|
quality_scores = { |
|
"style": predictions[0][0].item(), |
|
"efficiency": predictions[0][1].item(), |
|
"security": predictions[0][2].item(), |
|
"maintainability": predictions[0][3].item(), |
|
"scalability": predictions[0][4].item(), |
|
"readability": predictions[0][5].item(), |
|
"testability": predictions[0][6].item(), |
|
"modularity": predictions[0][7].item() |
|
} |
|
|
|
|
|
language = detect_language(code) |
|
if language == 'python': |
|
complexity = radon_complexity.cc_visit(code) |
|
maintainability = radon_metrics.mi_visit(code, True) |
|
quality_scores["cyclomatic_complexity"] = complexity[0].complexity if complexity else 0 |
|
quality_scores["maintainability_index"] = maintainability |
|
|
|
return quality_scores |
|
|
|
def visualize_code_structure(code: str) -> plt.Figure: |
|
try: |
|
tree = ast.parse(code) |
|
graph = nx.DiGraph() |
|
|
|
def add_nodes_edges(node, parent=None): |
|
node_id = id(node) |
|
graph.add_node(node_id, label=f"{type(node).__name__}\n{ast.unparse(node)[:20]}") |
|
if parent: |
|
graph.add_edge(id(parent), node_id) |
|
for child in ast.iter_child_nodes(node): |
|
add_nodes_edges(child, node) |
|
|
|
add_nodes_edges(tree) |
|
|
|
plt.figure(figsize=(15, 10)) |
|
pos = nx.spring_layout(graph, k=0.9, iterations=50) |
|
nx.draw(graph, pos, with_labels=True, node_color='lightblue', node_size=2000, font_size=8, font_weight='bold', arrows=True) |
|
labels = nx.get_node_attributes(graph, 'label') |
|
nx.draw_networkx_labels(graph, pos, labels, font_size=6) |
|
|
|
return plt |
|
except SyntaxError: |
|
return None |
|
|
|
def suggest_improvements(code: str, quality_scores: Dict[str, float]) -> List[str]: |
|
suggestions = [] |
|
thresholds = { |
|
"style": 0.7, |
|
"efficiency": 0.7, |
|
"security": 0.8, |
|
"maintainability": 0.7, |
|
"scalability": 0.7, |
|
"readability": 0.7, |
|
"testability": 0.7, |
|
"modularity": 0.7 |
|
} |
|
|
|
for metric, threshold in thresholds.items(): |
|
if quality_scores[metric] < threshold: |
|
suggestions.append(f"Consider improving code {metric} (current score: {quality_scores[metric]:.2f}).") |
|
|
|
if "cyclomatic_complexity" in quality_scores and quality_scores["cyclomatic_complexity"] > 10: |
|
suggestions.append(f"Consider breaking down complex functions to reduce cyclomatic complexity (current: {quality_scores['cyclomatic_complexity']}).") |
|
|
|
return suggestions |
|
|
|
|
|
def generate_advanced_code(prompt: str, language: str) -> str: |
|
input_text = f"Generate {language} code for: {prompt}\n\n" |
|
input_ids = gpt2_tokenizer.encode(input_text, return_tensors="pt") |
|
|
|
output = gpt2_model.generate( |
|
input_ids, |
|
max_length=1000, |
|
num_return_sequences=1, |
|
no_repeat_ngram_size=2, |
|
top_k=50, |
|
top_p=0.95, |
|
temperature=0.7 |
|
) |
|
|
|
generated_code = gpt2_tokenizer.decode(output[0], skip_special_tokens=True) |
|
return generated_code.split("\n\n", 1)[1] |
|
|
|
|
|
def analyze_code_similarity(code1: str, code2: str) -> float: |
|
tokens1 = tokenizer.tokenize(code1) |
|
tokens2 = tokenizer.tokenize(code2) |
|
|
|
|
|
set1 = set(tokens1) |
|
set2 = set(tokens2) |
|
similarity = len(set1.intersection(set2)) / len(set1.union(set2)) |
|
|
|
return similarity |
|
|
|
|
|
def estimate_code_performance(code: str) -> Dict[str, Any]: |
|
language = detect_language(code) |
|
if language == 'python': |
|
|
|
tree = ast.parse(code) |
|
analyzer = ComplexityAnalyzer() |
|
analyzer.visit(tree) |
|
return { |
|
"time_complexity": analyzer.time_complexity, |
|
"space_complexity": analyzer.space_complexity |
|
} |
|
else: |
|
return {"error": "Performance estimation not supported for this language"} |
|
|
|
class ComplexityAnalyzer(ast.NodeVisitor): |
|
def __init__(self): |
|
self.time_complexity = "O(1)" |
|
self.space_complexity = "O(1)" |
|
self.loop_depth = 0 |
|
|
|
def visit_For(self, node): |
|
self.loop_depth += 1 |
|
self.generic_visit(node) |
|
self.loop_depth -= 1 |
|
self.update_complexity() |
|
|
|
def visit_While(self, node): |
|
self.loop_depth += 1 |
|
self.generic_visit(node) |
|
self.loop_depth -= 1 |
|
self.update_complexity() |
|
|
|
def update_complexity(self): |
|
if self.loop_depth > 0: |
|
self.time_complexity = f"O(n^{self.loop_depth})" |
|
self.space_complexity = "O(n)" |
|
|
|
|
|
def translate_code(code: str, source_lang: str, target_lang: str) -> str: |
|
prompt = f"Translate the following {source_lang} code to {target_lang}:\n\n{code}\n\nTranslated {target_lang} code:" |
|
translated_code = generate_advanced_code(prompt, target_lang) |
|
return translated_code |
|
|
|
|
|
def generate_unit_tests(code: str, language: str) -> str: |
|
prompt = f"Generate unit tests for the following {language} code:\n\n{code}\n\nUnit tests:" |
|
unit_tests = generate_advanced_code(prompt, language) |
|
return unit_tests |
|
|
|
|
|
def generate_documentation(code: str, language: str) -> str: |
|
prompt = f"Generate comprehensive documentation for the following {language} code:\n\n{code}\n\nDocumentation:" |
|
documentation = generate_advanced_code(prompt, language) |
|
return documentation |
|
|
|
|
|
def suggest_refactoring(code: str, language: str) -> List[str]: |
|
quality_scores = analyze_code_quality(code) |
|
suggestions = suggest_improvements(code, quality_scores) |
|
|
|
|
|
tree = ast.parse(code) |
|
analyzer = RefactoringAnalyzer() |
|
analyzer.visit(tree) |
|
|
|
suggestions.extend(analyzer.suggestions) |
|
return suggestions |
|
|
|
class RefactoringAnalyzer(ast.NodeVisitor): |
|
def __init__(self): |
|
self.suggestions = [] |
|
self.function_lengths = {} |
|
|
|
def visit_FunctionDef(self, node): |
|
function_length = len(node.body) |
|
self.function_lengths[node.name] = function_length |
|
if function_length > 20: |
|
self.suggestions.append(f"Consider breaking down the function '{node.name}' into smaller, more manageable functions.") |
|
self.generic_visit(node) |
|
|
|
def visit_If(self, node): |
|
if isinstance(node.test, ast.Compare) and len(node.test.ops) > 2: |
|
self.suggestions.append("Consider simplifying complex conditional statements.") |
|
self.generic_visit(node) |
|
|
|
|
|
def analyze_code_security(code: str, language: str) -> List[str]: |
|
vulnerabilities = [] |
|
|
|
if language == 'python': |
|
tree = ast.parse(code) |
|
analyzer = SecurityAnalyzer() |
|
analyzer.visit(tree) |
|
vulnerabilities.extend(analyzer.vulnerabilities) |
|
|
|
|
|
|
|
return vulnerabilities |
|
|
|
class SecurityAnalyzer(ast.NodeVisitor): |
|
def __init__(self): |
|
self.vulnerabilities = [] |
|
|
|
def visit_Call(self, node): |
|
if isinstance(node.func, ast.Name): |
|
if node.func.id == 'eval': |
|
self.vulnerabilities.append("Potential security risk: Use of 'eval' function detected.") |
|
elif node.func.id == 'exec': |
|
self.vulnerabilities.append("Potential security risk: Use of 'exec' function detected.") |
|
self.generic_visit(node) |
|
|
|
|
|
def suggest_optimizations(code: str, language: str) -> List[str]: |
|
suggestions = [] |
|
|
|
if language == 'python': |
|
tree = ast.parse(code) |
|
analyzer = OptimizationAnalyzer() |
|
analyzer.visit(tree) |
|
suggestions.extend(analyzer.suggestions) |
|
|
|
|
|
|
|
return suggestions |
|
|
|
class OptimizationAnalyzer(ast.NodeVisitor): |
|
def __init__(self): |
|
self.suggestions = [] |
|
self.loop_variables = set() |
|
|
|
def visit_For(self, node): |
|
if isinstance(node.iter, ast.Call) and isinstance(node.iter.func, ast.Name) and node.iter.func.id == 'range': |
|
self.suggestions.append("Consider using 'enumerate()' instead of 'range()' for index-based iteration.") |
|
self.generic_visit(node) |
|
|
|
def visit_ListComp(self, node): |
|
if isinstance(node.elt, ast.Call) and isinstance(node.elt.func, ast.Name) and node.elt.func.id == 'append': |
|
self.suggestions.append("Consider using a list comprehension instead of appending in a loop for better performance.") |
|
self.generic_visit(node) |
|
|
|
|
|
st.set_page_config(page_title="Advanced AI Code Assistant", page_icon="π", layout="wide") |
|
|
|
st.markdown(""" |
|
<style> |
|
.main-container { |
|
padding: 2rem; |
|
border-radius: 10px; |
|
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1); |
|
background-color: #f8f9fa; |
|
} |
|
.title { |
|
color: #2c3e50; |
|
font-size: 2.5rem; |
|
margin-bottom: 1rem; |
|
} |
|
.subtitle { |
|
color: #34495e; |
|
font-size: 1.2rem; |
|
margin-bottom: 2rem; |
|
} |
|
.output-container { |
|
margin-top: 2rem; |
|
padding: 1rem; |
|
border-radius: 5px; |
|
background-color: #ffffff; |
|
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05); |
|
} |
|
.code-block { |
|
margin-bottom: 1rem; |
|
} |
|
.metric-container { |
|
display: flex; |
|
justify-content: space-between; |
|
flex-wrap: wrap; |
|
} |
|
.metric-item { |
|
flex-basis: 48%; |
|
margin-bottom: 1rem; |
|
} |
|
</style> |
|
""", unsafe_allow_html=True) |
|
|
|
st.markdown('<div class="main-container">', unsafe_allow_html=True) |
|
st.markdown('<h1 class="title">π Advanced AI Code Assistant</h1>', unsafe_allow_html=True) |
|
st.markdown('<p class="subtitle">Powered by Cutting-Edge AI & Multi-Domain Expertise</p>', unsafe_allow_html=True) |
|
|
|
task = st.selectbox("Select a task", [ |
|
"Generate Code", "Optimize Code", "Analyze Code Quality", |
|
"Translate Code", "Generate Unit Tests", "Generate Documentation", |
|
"Suggest Refactoring", "Analyze Code Security", "Suggest Optimizations" |
|
]) |
|
|
|
language = st.selectbox("Select programming language", [ |
|
"Python", "JavaScript", "Java", "C++", "Ruby", "Go", "Rust", "TypeScript" |
|
]) |
|
|
|
prompt = st.text_area("Enter your code or prompt", height=200) |
|
|
|
if st.button("Execute Task"): |
|
if prompt.strip() == "": |
|
st.error("Please enter a valid prompt or code snippet.") |
|
else: |
|
with st.spinner("Processing your request..."): |
|
if task == "Generate Code": |
|
result = generate_advanced_code(prompt, language.lower()) |
|
st.code(result, language=language.lower()) |
|
elif task == "Optimize Code": |
|
optimized_code, lint_results = optimize_code(prompt) |
|
st.code(optimized_code, language=language.lower()) |
|
st.text(lint_results) |
|
elif task == "Analyze Code Quality": |
|
quality_scores = analyze_code_quality(prompt) |
|
st.json(quality_scores) |
|
elif task == "Translate Code": |
|
target_lang = st.selectbox("Select target language", [ |
|
lang for lang in ["Python", "JavaScript", "Java", "C++", "Ruby", "Go", "Rust", "TypeScript"] if lang != language |
|
]) |
|
translated_code = translate_code(prompt, language.lower(), target_lang.lower()) |
|
st.code(translated_code, language=target_lang.lower()) |
|
elif task == "Generate Unit Tests": |
|
unit_tests = generate_unit_tests(prompt, language.lower()) |
|
st.code(unit_tests, language=language.lower()) |
|
elif task == "Generate Documentation": |
|
documentation = generate_documentation(prompt, language.lower()) |
|
st.markdown(documentation) |
|
elif task == "Suggest Refactoring": |
|
refactoring_suggestions = suggest_refactoring(prompt, language.lower()) |
|
for suggestion in refactoring_suggestions: |
|
st.info(suggestion) |
|
elif task == "Analyze Code Security": |
|
vulnerabilities = analyze_code_security(prompt, language.lower()) |
|
if vulnerabilities: |
|
for vuln in vulnerabilities: |
|
st.warning(vuln) |
|
else: |
|
st.success("No obvious security vulnerabilities detected.") |
|
elif task == "Suggest Optimizations": |
|
optimization_suggestions = suggest_optimizations(prompt, language.lower()) |
|
for suggestion in optimization_suggestions: |
|
st.info(suggestion) |
|
|
|
|
|
quality_scores = analyze_code_quality(prompt) |
|
performance_estimate = estimate_code_performance(prompt) |
|
|
|
col1, col2 = st.columns(2) |
|
with col1: |
|
st.subheader("Code Quality Metrics") |
|
for metric, score in quality_scores.items(): |
|
st.metric(metric.capitalize(), f"{score:.2f}") |
|
|
|
with col2: |
|
st.subheader("Performance Estimation") |
|
st.json(performance_estimate) |
|
|
|
visualization = visualize_code_structure(prompt) |
|
if visualization: |
|
st.subheader("Code Structure Visualization") |
|
st.pyplot(visualization) |
|
|
|
st.markdown(""" |
|
<div style='text-align: center; margin-top: 2rem; color: #4a5568;'> |
|
Powered by Advanced AI & Multi-Domain Expertise |
|
</div> |
|
""", unsafe_allow_html=True) |
|
|
|
st.markdown('</div>', unsafe_allow_html=True) |
|
|
|
|
|
app = FastAPI() |
|
|
|
class CodeRequest(BaseModel): |
|
code: str |
|
language: str |
|
task: str |
|
|
|
@app.post("/analyze") |
|
async def analyze_code(request: CodeRequest): |
|
if request.task == "quality": |
|
return analyze_code_quality(request.code) |
|
elif request.task == "security": |
|
return analyze_code_security(request.code, request.language) |
|
elif request.task == "optimize": |
|
optimized_code, _ = optimize_code(request.code) |
|
return {"optimized_code": optimized_code} |
|
else: |
|
return {"error": "Invalid task"} |
|
|
|
if __name__ == "__main__": |
|
uvicorn.run(app, host="0.0.0.0", port=8000) |