Spaces:
Running
Running
File size: 13,373 Bytes
223b238 501b2f2 223b238 501b2f2 223b238 501b2f2 223b238 501b2f2 223b238 501b2f2 223b238 501b2f2 223b238 501b2f2 223b238 501b2f2 223b238 501b2f2 223b238 501b2f2 223b238 501b2f2 223b238 501b2f2 223b238 501b2f2 223b238 501b2f2 223b238 501b2f2 223b238 501b2f2 223b238 501b2f2 223b238 501b2f2 223b238 501b2f2 223b238 501b2f2 223b238 501b2f2 223b238 501b2f2 223b238 501b2f2 223b238 501b2f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 |
# Dash app to visualize scRNA-seq data quality control metrics from scanpy objects
# Shoutout to Coding-with-Adam for the initial template of the project:
# https://github.com/Coding-with-Adam/Dash-by-Plotly/blob/master/Dash%20Components/Graph/dash-graph.py
import dash
from dash import dcc, html, Output, Input, callback
import plotly.express as px
import dash_callback_chain
import yaml
import polars as pl
import os
from natsort import natsorted
#pl.enable_string_cache(False)
dash.register_page(__name__, location="sidebar")
dataset = "datasuture/pbs/Suture_polars"
# Set custom resolution for plots:
config_fig = {
'toImageButtonOptions': {
'format': 'svg',
'filename': 'custom_image',
'height': 600,
'width': 700,
'scale': 1,
}
}
from adlfs import AzureBlobFileSystem
mountpount=os.environ['AZURE_MOUNT_POINT'],
AZURE_STORAGE_ACCESS_KEY=os.getenv('AZURE_STORAGE_ACCESS_KEY')
AZURE_STORAGE_ACCOUNT=os.getenv('AZURE_STORAGE_ACCOUNT')
# Load in config file
config_path = "./data/config.yaml"
# Add the read-in data from the yaml file
def read_config(filename):
with open(filename, 'r') as yaml_file:
config = yaml.safe_load(yaml_file)
return config
config = read_config(config_path)
path_parquet = config.get("path_parquet")
col_batch = config.get("col_batch")
col_features = config.get("col_features")
col_counts = config.get("col_counts")
col_mt = config.get("col_mt")
#filepath = f"az://{path_parquet}"
storage_options={'account_name': AZURE_STORAGE_ACCOUNT, 'account_key': AZURE_STORAGE_ACCESS_KEY} #, 'anon': False
#azfs = AzureBlobFileSystem(**storage_options )
# Load in multiple dataframes
df = pl.scan_parquet(f"az://{dataset}.parquet", storage_options=storage_options).collect()
# Create the second tab content with scatter-plot_db1-5 and scatter-plot_db1-6
tab2_content = html.Div([
html.Div([
html.Label("S-cycle genes"),
dcc.Dropdown(id='dpdn3', value="Mcm5", multi=False,
options=[
"Cdc45",
"Uhrf1",
"Mcm2",
"Slbp",
"Mcm5",
"Pola1",
"Gmnn",
"Cdc6",
"Rrm2",
"Atad2",
"Dscc1",
"Mcm4",
"Chaf1b",
"Rfc2",
"Msh2",
"Fen1",
"Hells",
"Prim1",
"Tyms",
"Mcm6",
"Wdr76",
"Rad51",
"Pcna",
"Ccne2",
"Casp8ap2",
"Usp1",
"Nasp",
"Rpa2",
"Ung",
"Rad51ap1",
"Blm",
"Pold3",
"Rrm1",
"Cenpu",
"Gins2",
"Tipin",
"Brip1",
"Dtl",
"Exo1",
"Ubr7",
"Clspn",
"E2f8",
"Cdca7"
]),
html.Label("G2M-cycle genes"),
dcc.Dropdown(id='dpdn4', value="Top2a", multi=False,
options=[
"Ube2c",
"Lbr",
"Ctcf",
"Cdc20",
"Cbx5",
"Kif11",
"Anp32e",
"Birc5",
"Cdk1",
"Tmpo",
"Hmmr",
"Pimreg",
"Aurkb",
"Top2a",
"Gtse1",
"Rangap1",
"Cdca3",
"Ndc80",
"Kif20b",
"Cenpf",
"Nek2",
"Nuf2",
"Nusap1",
"Bub1",
"Tpx2",
"Aurka",
"Ect2",
"Cks1b",
"Kif2c",
"Cdca8",
"Cenpa",
"Mki67",
"Ccnb2",
"Kif23",
"Smc4",
"G2e3",
"Tubb4b",
"Anln",
"Tacc3",
"Dlgap5",
"Ckap2",
"Ncapd2",
"Ttk",
"Ckap5",
"Cdc25c",
"Hjurp",
"Cenpe",
"Ckap2l",
"Cdca2",
"Hmgb2",
"Cks2",
"Psrc1",
"Gas2l3"
]),
]),
html.Div([
dcc.Graph(id='scatter-plot_db1-5', figure={}, className='three columns',config=config_fig)
]),
html.Div([
dcc.Graph(id='scatter-plot_db1-6', figure={}, className='three columns',config=config_fig)
]),
html.Div([
dcc.Graph(id='scatter-plot_db1-7', figure={}, className='three columns',config=config_fig)
]),
html.Div([
dcc.Graph(id='scatter-plot_db1-8', figure={}, className='three columns',config=config_fig)
]),
])
# Create the second tab content with scatter-plot_db1-5 and scatter-plot_db1-6
tab3_content = html.Div([
html.Div([
html.Label("UMAP condition 1"),
dcc.Dropdown(id='dpdn5', value="condition", multi=False,
options=df.columns),
html.Label("UMAP condition 2"),
dcc.Dropdown(id='dpdn6', value="Pax6", multi=False,
options=df.columns),
html.Div([
dcc.Graph(id='scatter-plot_db1-9', figure={}, className='four columns', hoverData=None ,config=config_fig)
]),
html.Div([
dcc.Graph(id='scatter-plot_db1-10', figure={}, className='four columns', hoverData=None, config=config_fig)
]),
html.Div([
dcc.Graph(id='scatter-plot_db1-11', figure={}, className='four columns',config=config_fig)
]),
html.Div([
dcc.Graph(id='my-graph_db12', figure={}, clickData=None, hoverData=None,
className='four columns',config=config_fig
)
]),
]),
])
tab4_content = html.Div([
html.Label("Column chosen"),
dcc.Dropdown(id='dpdn2', value="cell states", multi=False,
options=df.columns),
html.Div([
html.Label("Multi gene"),
dcc.Dropdown(id='dpdn7', value=["Pax6","Sox9","Cdk8","Il31ra","Gpha2",
"Areg","Krt13","Krt19","Psca","Muc20",
"S100a9","Lama3","Itgb4","Itga6","Thy1","Dcn","Scn7a",
"Cdh19","Mpz","Ptprc","Cd52","Cd69","Cd86","Rgs5","Des","Myh11","Cd93","Pecam1",
"Abcg2","Lyve1","Mki67"], multi=True,
options=df.columns),
]),
html.Div([
dcc.Graph(id='scatter-plot_db1-12', figure={}, className='row',style={'width': '100vh', 'height': '90vh'})
]),
])
# Define the tabs layout
layout = html.Div([
html.H1(f'Dataset analysis dashboard: {dataset}'),
dcc.Tabs(id='tabs', style= {'width': 600,
'font-size': '100%',
'height': 50}, value='tab1',children=[
#dcc.Tab(label='Dataset', value='tab0', children=tab0_content),
#dcc.Tab(label='QC', value='tab1', children=tab1_content),
dcc.Tab(label='UMAP visualisation', value='tab3', children=tab3_content),
dcc.Tab(label='Multi dot', value='tab4', children=tab4_content),
dcc.Tab(label='Cell cycle', value='tab2', children=tab2_content),
]),
])
@callback(
Output(component_id='scatter-plot_db1-5', component_property='figure'),
Output(component_id='scatter-plot_db1-6', component_property='figure'),
Output(component_id='scatter-plot_db1-7', component_property='figure'),
Output(component_id='scatter-plot_db1-8', component_property='figure'),
Output(component_id='scatter-plot_db1-9', component_property='figure'),
Output(component_id='scatter-plot_db1-10', component_property='figure'),
Output(component_id='scatter-plot_db1-11', component_property='figure'),
Output(component_id='scatter-plot_db1-12', component_property='figure'),
Output(component_id='my-graph_db12', component_property='figure'),
Input(component_id='dpdn2', component_property='value'),
Input(component_id='dpdn3', component_property='value'),
Input(component_id='dpdn4', component_property='value'),
Input(component_id='dpdn5', component_property='value'),
Input(component_id='dpdn6', component_property='value'),
Input(component_id='dpdn7', component_property='value'),
)
def update_graph_and_pie_chart(col_chosen, s_chosen, g2m_chosen, condition1_chosen, condition2_chosen, condition3_chosen): #, range_value_1, range_value_2, range_value_3 batch_chosen,
batch_chosen = df[col_chosen].unique().to_list()
dff = df.filter(
(pl.col(col_chosen).cast(str).is_in(batch_chosen)) #&
)
# Select ordering of plots
if condition1_chosen == "integrated_cell_states":
cat_ord= {condition1_chosen: natsorted(dff[condition1_chosen].unique())}
else:
cat_ord= {condition1_chosen: natsorted(dff[condition1_chosen].unique())}
# Calculate the mean expression
# Melt wide format DataFrame into long format
# Specify batch column as string type and gene columns as float type
list_conds = condition3_chosen
list_conds += [col_chosen]
dff_pre = dff.select(list_conds)
# Melt wide format DataFrame into long format
dff_long = dff_pre.melt(id_vars=col_chosen, variable_name="Gene", value_name="Mean expression")
# Calculate the mean expression levels for each gene in each region
expression_means = dff_long.lazy().group_by([col_chosen, "Gene"]).agg(pl.mean("Mean expression")).collect() #
# Calculate the percentage total expressed
dff_long1 = dff_pre.melt(id_vars=col_chosen, variable_name="Gene")#.group_by(pl.all()).agg(pl.len())
count = 1
dff_long2 = dff_long1.with_columns(pl.lit(count).alias("len"))
dff_long3 = dff_long2.filter(pl.col("value") > 0).group_by([col_chosen, "Gene"]).agg(pl.sum("len").alias("len"))
dff_long4 = dff_long2.group_by([col_chosen, "Gene"]).agg(pl.sum("len").alias("total"))
dff_5 = dff_long4.join(dff_long3, on=[col_chosen,"Gene"], how="outer")
result = dff_5.select([
pl.when((pl.col('len').is_not_null()) & (pl.col('total').is_not_null()))
.then(pl.col('len') / pl.col('total')*100)
.otherwise(None).alias("%"),
])
result = result.with_columns(pl.col("%").fill_null(0))
dff_5[["percentage"]] = result[["%"]]
dff_5 = dff_5.select(pl.col(col_chosen,"Gene","percentage"))
# Final part to join the percentage expressed and mean expression levels
expression_means = expression_means.join(dff_5, on=[col_chosen,"Gene"], how="inner")
fig_scatter_db1_5 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=s_chosen,
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
hover_name=None, title="S-cycle gene:",template="seaborn")
fig_scatter_db1_6 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=g2m_chosen,
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
hover_name='condition', title="G2M-cycle gene:",template="seaborn")
fig_scatter_db1_7 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color="S_score",
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
hover_name='condition', title="S score:",template="seaborn")
fig_scatter_db1_8 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color="G2M_score",
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
hover_name='condition', title="G2M score:",template="seaborn")
# Sort values of custom in-between
dff = dff.sort(condition1_chosen)
fig_scatter_db1_9 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=condition1_chosen,
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
hover_name=None,hover_data = None, template="seaborn",category_orders=cat_ord)
fig_scatter_db1_9.update_traces(hoverinfo='none', hovertemplate=None)
fig_scatter_db1_9.update_layout(hovermode=False)
fig_scatter_db1_10 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=condition2_chosen,
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
hover_name='condition',template="seaborn")
fig_scatter_db1_11 = px.scatter(data_frame=dff, x=condition1_chosen, y=condition2_chosen, color=condition1_chosen,
#labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
hover_name='condition',template="seaborn",category_orders=cat_ord)
# Reorder categories on natural sorting or on the integrated cell state order of the paper
if col_chosen == "integrated_cell_states":
fig_scatter_db1_12 = px.scatter(data_frame=expression_means, x="Gene", y=col_chosen, color="Mean expression",
size="percentage", size_max = 20,
#labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
hover_name=col_chosen,template="seaborn",category_orders={col_chosen: natsorted(expression_means[col_chosen].unique())})
else:
fig_scatter_db1_12 = px.scatter(data_frame=expression_means, x="Gene", y=col_chosen, color="Mean expression",
size="percentage", size_max = 20,
#labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
hover_name=col_chosen,template="seaborn",category_orders={col_chosen: natsorted(expression_means[col_chosen].unique()),"Gene": condition3_chosen})
fig_violin_db12 = px.violin(data_frame=dff, x=condition1_chosen, y=condition2_chosen, box=True, points="all",
color=condition1_chosen, hover_name=condition1_chosen,template="seaborn",category_orders=cat_ord)
return fig_scatter_db1_5, fig_scatter_db1_6, fig_scatter_db1_7, fig_scatter_db1_8, fig_scatter_db1_9, fig_scatter_db1_10, fig_scatter_db1_11, fig_scatter_db1_12, fig_violin_db12 |