File size: 11,727 Bytes
e222c3f 10f3250 499cb21 10f3250 e222c3f 7f5e659 ff4d438 499cb21 ff4d438 e222c3f 10f3250 e222c3f d366e7d e222c3f 13a83ac c48cb63 5f1bd17 13a83ac ff4d438 13a83ac c48cb63 e222c3f 5d74497 e222c3f 13a83ac e222c3f 5d74497 e222c3f 13a83ac e222c3f 5d74497 e222c3f c31b288 e222c3f c31b288 e222c3f c31b288 e222c3f c31b288 e222c3f 0670f39 e222c3f 13a83ac ff4d438 13a83ac ff4d438 13a83ac ff4d438 13a83ac ff4d438 e222c3f ff4d438 13a83ac ff4d438 e222c3f 9dc646a e222c3f c31b288 e222c3f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
import os
import subprocess
os.system("pip install gradio==3.50")
os.system("pip install dlib==19.24.2")
os.system("pip install scikit-learn")
os.system("pip install scikit-image")
os.system("pip install tensorflow==2.11.0")
#############################################
import torch
print(f"Is CUDA available: {torch.cuda.is_available()}")
# True
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
###################################################
import tensorflow as tf
gpus = tf.config.list_physical_devices('GPU')
print("Available GPUs TF:", gpus)
if gpus:
try:
# Allow TensorFlow to allocate memory as needed
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
except RuntimeError as e:
print(e)
else:
print("No GPUs available.")
###################################################
from skimage import exposure
from skimage.filters import laplace
from argparse import Namespace
import pprint
import numpy as np
from PIL import Image
import torch
import torchvision.transforms as transforms
import cv2
import dlib
import matplotlib.pyplot as plt
import gradio as gr # Importing Gradio as gr
import tensorflow as tf
from tensorflow.keras.models import load_model
from tensorflow.keras.losses import MeanSquaredError
from tensorflow.keras.preprocessing.image import img_to_array
from huggingface_hub import hf_hub_download, login
from datasets.augmentations import AgeTransformer
from utils.common import tensor2im
from models.psp import pSp
# Huggingface login
login(token=os.getenv("TOKENKEY"))
########################################################################
############## tensorflow model for age calculation #######################
# If 'mse' is a custom function needed,
#custom_objects = {'mse': MeanSquaredError()}
new_age_model = load_model("age_prediction_modelV2.h5")
########################################################################
########################################################################
############## pytorch model for age calculation #######################
#age_calc_model = torch.load('Custom_Age_prediction_model.pth')
########################################################################
# Download models from Huggingface
#age_prototxt = hf_hub_download(repo_id="AshanGimhana/Age_Detection_caffe", filename="age.prototxt")
#caffe_model = hf_hub_download(repo_id="AshanGimhana/Age_Detection_caffe", filename="dex_imdb_wiki.caffemodel")
########################################################################
############## caffe model for age calculation #######################
#age_prototxt = hf_hub_download(repo_id="AshanGimhana/Age_Detection_caffe", filename="age.prototxt")
#caffe_model = hf_hub_download(repo_id="AshanGimhana/Age_Detection_caffe", filename="dex_imdb_wiki.caffemodel")
# Age prediction model setup
#age_net = cv2.dnn.readNetFromCaffe(age_prototxt, caffe_model)
########################################################################
########################################################################################################
# Aging model #
sam_ffhq_aging = hf_hub_download(repo_id="AshanGimhana/Face_Agin_model", filename="sam_ffhq_aging.pt")
########################################################################################################
# Face detection and landmarks predictor setup
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")
# Load the pretrained aging model
EXPERIMENT_TYPE = 'ffhq_aging'
EXPERIMENT_DATA_ARGS = {
"ffhq_aging": {
"model_path": sam_ffhq_aging,
"transform": transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])
}
}
EXPERIMENT_ARGS = EXPERIMENT_DATA_ARGS[EXPERIMENT_TYPE]
model_path = EXPERIMENT_ARGS['model_path']
ckpt = torch.load(model_path, map_location='cpu')
opts = ckpt['opts']
pprint.pprint(opts)
opts['checkpoint_path'] = model_path
opts = Namespace(**opts)
net = pSp(opts)
net.eval()
net.cuda()
print('Model successfully loaded!')
####### Image quality checking func ######################
#def check_image_quality(image):
### Convert the image to grayscale
##gray_image = np.array(image.convert("L"))
### Check for under/over-exposure using histogram
#hist = exposure.histogram(gray_image)
#low_exposure = hist[0][:5].sum() > 0.5 * hist[0].sum() # Significant pixels in dark range
#high_exposure = hist[0][-5:].sum() > 0.5 * hist[0].sum() # Significant pixels in bright range
### Check sharpness using Laplacian variance
#sharpness = cv2.Laplacian(np.array(image), cv2.CV_64F).var()
#low_sharpness = sharpness < 70 # Threshold for sharpness
### Check overall quality
#if low_exposure or high_exposure or low_sharpness:
#return False # Image quality is insufficient
#return True # Image quality is sufficient
############################################################
# Functions for face and mouth region
def get_face_region(image):
gray = cv2.cvtColor(np.array(image), cv2.COLOR_BGR2GRAY)
faces = detector(gray)
if len(faces) > 0:
return faces[0]
return None
def get_mouth_region(image):
gray = cv2.cvtColor(np.array(image), cv2.COLOR_BGR2GRAY)
faces = detector(gray)
for face in faces:
landmarks = predictor(gray, face)
mouth_points = [(landmarks.part(i).x, landmarks.part(i).y) for i in range(48, 68)]
return np.array(mouth_points, np.int32)
return None
# Function to predict age
# old tensorflow function for age predict
def predict_age(image):
image = np.array(image.resize((64, 64)))
image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
image = image / 255.0
image = np.expand_dims(image, axis=0)
##### Predict age
val = new_age_model.predict(np.array(image))
age = val[0][0]
return int(age)
#def predict_age(image):
#age_calc_model.eval()
##### Load and preprocess the image
#image = cv2.imread(image, cv2.IMREAD_GRAYSCALE) # Load as grayscale
#image = cv2.resize(image, (64, 64)) # Resize to 64x64
#image = image / 255.0 # Normalize pixel values to [0, 1]
#image = np.expand_dims(image, axis=0) # Add batch dimension
#image = np.expand_dims(image, axis=0) # Add channel dimension
#image = torch.tensor(image, dtype=torch.float32).to(device)
# Convert to tensor
#image_tensor = torch.tensor(image, dtype=torch.float32)
#### Predict age
#with torch.no_grad():
#predicted_age = age_calc_model(image_tensor)
#return int(predicted_age.item())
# Function for color correction
def color_correct(source, target):
mean_src = np.mean(source, axis=(0, 1))
std_src = np.std(source, axis=(0, 1))
mean_tgt = np.mean(target, axis=(0, 1))
std_tgt = np.std(target, axis=(0, 1))
src_normalized = (source - mean_src) / std_src
src_corrected = (src_normalized * std_tgt) + mean_tgt
return np.clip(src_corrected, 0, 255).astype(np.uint8)
# Function to replace teeth
def replace_teeth(temp_image, aged_image):
temp_image = np.array(temp_image)
aged_image = np.array(aged_image)
temp_mouth = get_mouth_region(temp_image)
aged_mouth = get_mouth_region(aged_image)
if temp_mouth is None or aged_mouth is None:
return aged_image
temp_mask = np.zeros_like(temp_image)
cv2.fillConvexPoly(temp_mask, temp_mouth, (255, 255, 255))
temp_mouth_region = cv2.bitwise_and(temp_image, temp_mask)
temp_mouth_bbox = cv2.boundingRect(temp_mouth)
aged_mouth_bbox = cv2.boundingRect(aged_mouth)
temp_mouth_crop = temp_mouth_region[temp_mouth_bbox[1]:temp_mouth_bbox[1] + temp_mouth_bbox[3], temp_mouth_bbox[0]:temp_mouth_bbox[0] + temp_mouth_bbox[2]]
temp_mask_crop = temp_mask[temp_mouth_bbox[1]:temp_mouth_bbox[1] + temp_mouth_bbox[3], temp_mouth_bbox[0]:temp_mouth_bbox[0] + temp_mouth_bbox[2]]
temp_mouth_crop_resized = cv2.resize(temp_mouth_crop, (aged_mouth_bbox[2], aged_mouth_bbox[3]))
temp_mask_crop_resized = cv2.resize(temp_mask_crop, (aged_mouth_bbox[2], aged_mouth_bbox[3]))
aged_mouth_crop = aged_image[aged_mouth_bbox[1]:aged_mouth_bbox[1] + aged_mouth_bbox[3], aged_mouth_bbox[0]:aged_mouth_bbox[0] + aged_mouth_bbox[2]]
temp_mouth_crop_resized = color_correct(temp_mouth_crop_resized, aged_mouth_crop)
center = (aged_mouth_bbox[0] + aged_mouth_bbox[2] // 2, aged_mouth_bbox[1] + aged_mouth_bbox[3] // 2)
seamless_teeth = cv2.seamlessClone(temp_mouth_crop_resized, aged_image, temp_mask_crop_resized, center, cv2.NORMAL_CLONE)
return seamless_teeth
# Function to run alignment
def run_alignment(image):
from scripts.align_all_parallel import align_face
temp_image_path = "/tmp/temp_image.jpg"
image.save(temp_image_path)
aligned_image = align_face(filepath=temp_image_path, predictor=predictor)
return aligned_image
# Function to apply aging
def apply_aging(image, target_age):
img_transforms = EXPERIMENT_DATA_ARGS[EXPERIMENT_TYPE]['transform']
input_image = img_transforms(image)
age_transformers = [AgeTransformer(target_age=target_age)]
results = []
for age_transformer in age_transformers:
with torch.no_grad():
input_image_age = [age_transformer(input_image.cpu()).to('cuda')]
input_image_age = torch.stack(input_image_age)
result_tensor = net(input_image_age.float(), randomize_noise=False, resize=False)[0]
result_image = tensor2im(result_tensor)
results.append(np.array(result_image))
final_result = results[0]
return final_result
# Function to process the image
def process_image(uploaded_image):
# Loading images for good and bad teeth
temp_images_good = [Image.open(f"good_teeth/G{i}.JPG") for i in range(1, 4)]
temp_images_bad = [Image.open(f"bad_teeth/B{i}.jpeg") for i in range(1, 5)]
# Predicting the age
predicted_age = predict_age(uploaded_image)
if predicted_age >= 48:
target_age =35+1
else:
target_age = predicted_age + 2
# Aligning the face in the uploaded image
aligned_image = run_alignment(uploaded_image)
# Applying aging effect
aged_image = apply_aging(aligned_image, target_age=target_age)
# Randomly selecting teeth images
good_teeth_image = temp_images_good[np.random.randint(0, len(temp_images_good))]
bad_teeth_image = temp_images_bad[np.random.randint(0, len(temp_images_bad))]
# Replacing teeth in aged image
aged_image_good_teeth = replace_teeth(good_teeth_image, aged_image)
aged_image_bad_teeth = replace_teeth(bad_teeth_image, aged_image)
return aged_image_good_teeth, aged_image_bad_teeth, predicted_age, target_age
# Gradio Interface
def show_results(uploaded_image):
### Perform quality check
#if not check_image_quality(uploaded_image):
#return None, None, "Not_Allowed"
# If quality is acceptable, continue with processing
aged_image_good_teeth, aged_image_bad_teeth, predicted_age, target_age = process_image(uploaded_image)
return aged_image_good_teeth, aged_image_bad_teeth, f"Predicted Age: {predicted_age}, Target Age: {target_age}"
iface = gr.Interface(
fn=show_results,
inputs=gr.Image(type="pil"),
outputs=[gr.Image(type="pil"), gr.Image(type="pil"), gr.Textbox()],
title="Aging Effect with Teeth Replacement",
description="Upload an image to apply an aging effect. The application will generate two results: one with good teeth and one with bad teeth."
)
iface.launch() |