Spaces:
Running
Running
File size: 14,240 Bytes
81e13bb caa039b 81e13bb a65c5ef 3bb9361 caa039b 81e13bb caa039b c04d620 f8afc9b 81e13bb caa039b 81e13bb caa039b 81e13bb f8afc9b 81e13bb f8afc9b 81e13bb caa039b 81e13bb caa039b 81e13bb caa039b 81e13bb caa039b 81e13bb caa039b 81e13bb caa039b 81e13bb caa039b 81e13bb caa039b 81e13bb caa039b 81e13bb caa039b f8afc9b 81e13bb caa039b 81e13bb caa039b 81e13bb caa039b 81e13bb caa039b f8afc9b ef68f54 f8afc9b 81e13bb caa039b f8afc9b caa039b 81e13bb caa039b 81e13bb caa039b 81e13bb c04d620 caa039b 3bb9361 81e13bb 3bb9361 6413971 caa039b 6413971 caa039b 6413971 caa039b 6413971 3bb9361 6413971 3bb9361 caa039b 6413971 caa039b 81e13bb caa039b 81e13bb caa039b 81e13bb e709d2a caa039b e709d2a caa039b e709d2a caa039b e709d2a f8afc9b 6413971 e709d2a 6413971 e709d2a 6413971 81e13bb e709d2a caa039b 3bb9361 caa039b e709d2a 81e13bb e709d2a 3bb9361 e709d2a caa039b 6413971 caa039b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 |
from fastapi import FastAPI, File, UploadFile, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from typing import Dict
import shutil
import torch
import logging
import os
# Set Google Application Credentials
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = (
"titanium-scope-436311-t3-966373f5aa2f.json"
)
from s3_setup import s3_client
import requests
from fastapi import FastAPI, HTTPException, Request
from transformers import LayoutLMv3Processor, LayoutLMv3ForTokenClassification
from dotenv import load_dotenv
import urllib.parse
from utils import doc_processing, extract_document_number_from_file
# Load .env file
load_dotenv()
# Access variables
dummy_key = os.getenv("dummy_key")
HUGGINGFACE_AUTH_TOKEN = dummy_key
# Hugging Face model and token
aadhar_model = "AuditEdge/doc_ocr_a" # Replace with your fine-tuned model if applicable
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# Load the processor (tokenizer + image processor)
processor_aadhar = LayoutLMv3Processor.from_pretrained(
aadhar_model, use_auth_token=HUGGINGFACE_AUTH_TOKEN
)
aadhar_model = LayoutLMv3ForTokenClassification.from_pretrained(
aadhar_model, use_auth_token=HUGGINGFACE_AUTH_TOKEN
)
aadhar_model = aadhar_model.to(device)
# pan model
pan_model = "AuditEdge/doc_ocr_p" # Replace with your fine-tuned model if applicable
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# Load the processor (tokenizer + image processor)
processor_pan = LayoutLMv3Processor.from_pretrained(
pan_model, use_auth_token=HUGGINGFACE_AUTH_TOKEN
)
pan_model = LayoutLMv3ForTokenClassification.from_pretrained(
pan_model, use_auth_token=HUGGINGFACE_AUTH_TOKEN
)
pan_model = pan_model.to(device)
#
# gst model
gst_model = (
"AuditEdge/doc_ocr_new_g" # Replace with your fine-tuned model if applicable
)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# Load the processor (tokenizer + image processor)
processor_gst = LayoutLMv3Processor.from_pretrained(
gst_model, use_auth_token=HUGGINGFACE_AUTH_TOKEN
)
gst_model = LayoutLMv3ForTokenClassification.from_pretrained(
gst_model, use_auth_token=HUGGINGFACE_AUTH_TOKEN
)
gst_model = gst_model.to(device)
# cheque model
cheque_model = (
"AuditEdge/doc_ocr_new_c" # Replace with your fine-tuned model if applicable
)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# Load the processor (tokenizer + image processor)
processor_cheque = LayoutLMv3Processor.from_pretrained(
cheque_model, use_auth_token=HUGGINGFACE_AUTH_TOKEN
)
cheque_model = LayoutLMv3ForTokenClassification.from_pretrained(
cheque_model, use_auth_token=HUGGINGFACE_AUTH_TOKEN
)
cheque_model = cheque_model.to(device)
# Verify model and processor are loaded
print("Model and processor loaded successfully!")
print(f"Model is on device: {next(aadhar_model.parameters()).device}")
# Import inference modules
from layoutlmv3FineTuning.Layoutlm_inference.ocr import prepare_batch_for_inference
from layoutlmv3FineTuning.Layoutlm_inference.inference_handler import handle
# Create FastAPI instance
app = FastAPI(debug=True)
# Enable CORS
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Configure directories
UPLOAD_FOLDER = "./uploads/"
processing_folder = "./processed_images"
os.makedirs(UPLOAD_FOLDER, exist_ok=True) # Ensure the main upload folder exists
os.makedirs(processing_folder, exist_ok=True)
UPLOAD_DIRS = {
"pan_file": "uploads/pan/",
"aadhar_file": "uploads/aadhar/",
"gst_file": "uploads/gst/",
"msme_file": "uploads/msme/",
"cin_llpin_file": "uploads/cin_llpin/",
"cheque_file": "uploads/cheque/",
}
process_dirs = {
"aadhar_file": "processed_images/aadhar/",
"pan_file": "processed_images/pan/",
"cheque_file": "processed_images/cheque/",
"gst_file": "processed_images/gst/",
"msme_file": "processed_images/msme/",
"cin_llpin_file": "processed_images/cin_llpin/",
}
# Ensure individual directories exist
for dir_path in UPLOAD_DIRS.values():
os.makedirs(dir_path, exist_ok=True)
for dir_path in process_dirs.values():
os.makedirs(dir_path, exist_ok=True)
# Logger configuration
logging.basicConfig(level=logging.INFO)
def perform_inference(file_paths: Dict[str, str], upload_to_s3: bool):
model_dirs = {
"pan_file": pan_model,
"gst_file": gst_model,
"cheque_file": cheque_model,
}
try:
inference_results = {}
for doc_type, file_path in file_paths.items():
processed_file_p = file_path.split("&&")[
0
] # Extracted document number or processed image
unprocessed_file_path = file_path.split("&&")[1] # Original file path
print(f"Processing {doc_type}: {processed_file_p}")
# Determine the attachment number based on the document type
attachment_num = {
"pan_file": 2,
"gst_file": 4,
"msme_file": 5,
"cin_llpin_file": 6,
"cheque_file": 8,
}.get(doc_type, None)
if attachment_num is None:
print(f"Skipping {doc_type}, not recognized.")
continue
# Upload file to S3 if required
if upload_to_s3:
client = s3_client()
bucket_name = "edgekycdocs"
if doc_type == "cin_llpin":
folder_name = f"{doc_type.replace('_', '')}docs"
else:
folder_name = f"{doc_type.split('_')[0]}docs"
file_name = unprocessed_file_path.split("/")[-1].replace(" ", "_")
try:
response = client.upload_file(
unprocessed_file_path, bucket_name, folder_name, file_name
)
print("The file has been uploaded to S3 bucket", response)
attachment_url = response["url"]
print(f"File uploaded to S3: {attachment_url}")
except Exception as e:
print(f"Failed to upload {file_name} to S3: {e}")
attachment_url = None
else:
attachment_url = None
# If it's an OCR-based extraction (CIN, MSME, LLPIN, PAN, Aadhaar), return the extracted number
if doc_type in ["msme_file", "cin_llpin_file", "aadhar_file"]:
result = {
"attachment_num": processed_file_p, # Extracted CIN, LLPIN, MSME, PAN, or Aadhaar number
"attachment_url": attachment_url,
"attachment_status": 200,
"detect": True,
}
else:
# If the document needs ML model inference (PAN, GST, Cheque)
if doc_type in model_dirs:
print(
f"Running ML inference for {doc_type} using {model_dirs[doc_type]}"
)
images_path = [processed_file_p]
inference_batch = prepare_batch_for_inference(images_path)
context = model_dirs[doc_type]
processor = globals()[f"processor_{doc_type.split('_')[0]}"]
name = doc_type.split("_")[0]
result = handle(inference_batch, context, processor, name)
result["attachment_url"] = attachment_url
result["detect"] = True
else:
print(f"No model found for {doc_type}, skipping inference.")
continue
inference_results[f"attachment_{attachment_num}"] = result
return inference_results
except Exception as e:
print(f"Error in perform_inference: {e}")
return {"status": "error", "message": "Text extraction failed."}
# Routes
@app.get("/")
def greet_json():
return {"Hello": "World!"}
@app.post("/api/aadhar_ocr")
async def aadhar_ocr(
aadhar_file: UploadFile = File(None),
pan_file: UploadFile = File(None),
cheque_file: UploadFile = File(None),
gst_file: UploadFile = File(None),
msme_file: UploadFile = File(None),
cin_llpin_file: UploadFile = File(None),
upload_to_s3: bool = True,
):
# try:
# Handle file uploads
file_paths = {}
for file_type, folder in UPLOAD_DIRS.items():
file = locals()[file_type] # Dynamically access the file arguments
if file:
# Save the file in the respective directory
file_path = os.path.join(folder, file.filename)
print("this is the filename", file.filename)
with open(file_path, "wb") as buffer:
shutil.copyfileobj(file.file, buffer)
file_paths[file_type] = file_path
# Log received files
logging.info(f"Received files: {list(file_paths.keys())}")
print("file_paths", file_paths)
files = {}
for key, f_path in file_paths.items():
name = os.path.splitext(os.path.basename(f_path))[0]
# Determine id_type: for cin_llpin_file, explicitly set id_type to "cin_llpin"
if key == "cin_llpin_file":
id_type = "cin_llpin"
else:
id_type = key.split("_")[0]
doc_type = os.path.splitext(f_path)[-1].lstrip(".")
if key in ["msme_file", "cin_llpin_file", "aadhar_file"]:
extracted_number = extract_document_number_from_file(f_path, id_type)
if not extracted_number:
logging.error(f"Failed to extract document number from {f_path}")
raise HTTPException(
status_code=400, detail=f"Invalid document format in {key}"
)
files[key] = extracted_number + "&&" + f_path
print("files", files[key])
else:
# For other files, use existing preprocessing.
preprocessing = doc_processing(name, id_type, doc_type, f_path)
response = preprocessing.process()
files[key] = response["output_p"] + "&&" + f_path
# Perform inference
result = perform_inference(files, upload_to_s3)
print("this is the result we got", result)
if "status" in list(result.keys()):
raise Exception("Custom error message")
# if result["status"] == "error":
return {"status": "success", "result": result}
@app.post("/api/document_ocr")
async def document_ocr_s3(request: Request):
try:
body = await request.json() # Read JSON body
logging.info(f"Received request body: {body}")
except Exception as e:
logging.error(f"Failed to parse JSON request: {e}")
raise HTTPException(status_code=400, detail="Invalid JSON payload")
# Extract file URLs
url_mapping = {
"pan_file": body.get("pan_file"),
"gst_file": body.get("gst_file"),
"msme_file": body.get("msme_file"),
"cin_llpin_file": body.get("cin_llpin_file"),
"cheque_file": body.get("cheque_file"),
}
upload_to_s3 = body.get("upload_to_s3", False)
logging.info(f"URL Mapping: {url_mapping}")
file_paths = {}
for file_type, url in url_mapping.items():
if url:
# local_filename = url.split("/")[-1]
local_filename = urllib.parse.unquote(url.split("/")[-1]).replace(" ", "_")
file_path = os.path.join(UPLOAD_DIRS[file_type], local_filename)
try:
logging.info(f"Attempting to download {url} for {file_type}...")
response = requests.get(url, stream=True)
response.raise_for_status()
with open(file_path, "wb") as buffer:
shutil.copyfileobj(response.raw, buffer)
file_paths[file_type] = file_path
logging.info(f"Successfully downloaded {file_type} to {file_path}")
except requests.exceptions.RequestException as e:
logging.error(f"Failed to download {url}: {e}")
raise HTTPException(
status_code=400, detail=f"Failed to download file from {url}"
)
logging.info(f"Downloaded files: {list(file_paths.keys())}")
files = {}
for key, f_path in file_paths.items():
name = f_path.split("/")[-1].split(".")[0]
if key == "cin_llpin_file":
id_type = "cin_llpin"
else:
id_type = key.split("_")[0]
# id_type = key.split("_")[0]
doc_type = f_path.split("/")[-1].split(".")[-1]
# For MSME and CIN/LLPIN files, extract document number via OCR and regex
if key in ["msme_file", "cin_llpin_file", "aadhar_file"]:
extracted_number = extract_document_number_from_file(f_path, id_type)
if not extracted_number:
logging.error(f"Failed to extract document number from {f_path}")
raise HTTPException(
status_code=400, detail=f"Invalid document format in {key}"
)
files[key] = extracted_number + "&&" + f_path
else:
# For other documents, use the existing ML model preprocessing
preprocessing = doc_processing(name, id_type, doc_type, f_path)
response = preprocessing.process()
files[key] = response["output_p"] + "&&" + f_path
result = perform_inference(files, upload_to_s3)
if "status" in list(result.keys()):
raise HTTPException(status_code=500, detail="Custom error message")
return {"status": "success", "result": result}
|