File size: 14,240 Bytes
81e13bb
 
 
 
caa039b
81e13bb
a65c5ef
 
 
 
 
 
3bb9361
caa039b
 
81e13bb
 
caa039b
c04d620
f8afc9b
81e13bb
 
 
 
 
 
 
 
 
 
 
 
 
 
caa039b
81e13bb
 
caa039b
81e13bb
f8afc9b
 
81e13bb
 
 
 
 
 
 
f8afc9b
81e13bb
 
caa039b
81e13bb
 
caa039b
81e13bb
 
 
 
 
caa039b
 
 
81e13bb
 
 
 
 
caa039b
81e13bb
 
caa039b
81e13bb
 
 
caa039b
81e13bb
caa039b
 
 
81e13bb
 
 
 
 
caa039b
81e13bb
 
caa039b
81e13bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
caa039b
f8afc9b
81e13bb
caa039b
 
81e13bb
 
 
caa039b
81e13bb
caa039b
 
 
81e13bb
 
caa039b
f8afc9b
 
 
 
 
ef68f54
 
f8afc9b
 
81e13bb
 
 
caa039b
f8afc9b
 
caa039b
81e13bb
 
 
 
caa039b
 
81e13bb
 
 
caa039b
81e13bb
c04d620
caa039b
3bb9361
81e13bb
3bb9361
6413971
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
caa039b
 
 
 
 
6413971
 
 
caa039b
6413971
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
caa039b
6413971
 
3bb9361
6413971
 
 
 
 
 
 
 
 
 
 
 
3bb9361
caa039b
6413971
 
 
caa039b
81e13bb
 
 
 
 
 
 
caa039b
81e13bb
 
 
 
 
 
caa039b
 
 
81e13bb
e709d2a
caa039b
e709d2a
 
 
 
 
 
 
caa039b
e709d2a
 
 
 
 
 
caa039b
 
e709d2a
f8afc9b
6413971
e709d2a
6413971
 
 
 
 
 
 
e709d2a
6413971
 
 
 
 
 
 
 
 
 
 
 
 
 
81e13bb
e709d2a
caa039b
3bb9361
caa039b
e709d2a
 
 
81e13bb
e709d2a
3bb9361
e709d2a
caa039b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6413971
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
caa039b
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
from fastapi import FastAPI, File, UploadFile, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from typing import Dict
import shutil
import torch
import logging
import os

# Set Google Application Credentials
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = (
    "titanium-scope-436311-t3-966373f5aa2f.json"
)
from s3_setup import s3_client
import requests
from fastapi import FastAPI, HTTPException, Request
from transformers import LayoutLMv3Processor, LayoutLMv3ForTokenClassification
from dotenv import load_dotenv
import urllib.parse
from utils import doc_processing, extract_document_number_from_file

# Load .env file
load_dotenv()

# Access variables
dummy_key = os.getenv("dummy_key")
HUGGINGFACE_AUTH_TOKEN = dummy_key

# Hugging Face model and token
aadhar_model = "AuditEdge/doc_ocr_a"  # Replace with your fine-tuned model if applicable
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")

# Load the processor (tokenizer + image processor)
processor_aadhar = LayoutLMv3Processor.from_pretrained(
    aadhar_model, use_auth_token=HUGGINGFACE_AUTH_TOKEN
)
aadhar_model = LayoutLMv3ForTokenClassification.from_pretrained(
    aadhar_model, use_auth_token=HUGGINGFACE_AUTH_TOKEN
)


aadhar_model = aadhar_model.to(device)

# pan model
pan_model = "AuditEdge/doc_ocr_p"  # Replace with your fine-tuned model if applicable
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")


# Load the processor (tokenizer + image processor)
processor_pan = LayoutLMv3Processor.from_pretrained(
    pan_model, use_auth_token=HUGGINGFACE_AUTH_TOKEN
)
pan_model = LayoutLMv3ForTokenClassification.from_pretrained(
    pan_model, use_auth_token=HUGGINGFACE_AUTH_TOKEN
)
pan_model = pan_model.to(device)

#
# gst model
gst_model = (
    "AuditEdge/doc_ocr_new_g"  # Replace with your fine-tuned model if applicable
)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")

# Load the processor (tokenizer + image processor)
processor_gst = LayoutLMv3Processor.from_pretrained(
    gst_model, use_auth_token=HUGGINGFACE_AUTH_TOKEN
)
gst_model = LayoutLMv3ForTokenClassification.from_pretrained(
    gst_model, use_auth_token=HUGGINGFACE_AUTH_TOKEN
)
gst_model = gst_model.to(device)

# cheque model

cheque_model = (
    "AuditEdge/doc_ocr_new_c"  # Replace with your fine-tuned model if applicable
)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")

# Load the processor (tokenizer + image processor)
processor_cheque = LayoutLMv3Processor.from_pretrained(
    cheque_model, use_auth_token=HUGGINGFACE_AUTH_TOKEN
)
cheque_model = LayoutLMv3ForTokenClassification.from_pretrained(
    cheque_model, use_auth_token=HUGGINGFACE_AUTH_TOKEN
)
cheque_model = cheque_model.to(device)


# Verify model and processor are loaded
print("Model and processor loaded successfully!")
print(f"Model is on device: {next(aadhar_model.parameters()).device}")


# Import inference modules
from layoutlmv3FineTuning.Layoutlm_inference.ocr import prepare_batch_for_inference
from layoutlmv3FineTuning.Layoutlm_inference.inference_handler import handle

# Create FastAPI instance
app = FastAPI(debug=True)

# Enable CORS
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# Configure directories
UPLOAD_FOLDER = "./uploads/"
processing_folder = "./processed_images"
os.makedirs(UPLOAD_FOLDER, exist_ok=True)  # Ensure the main upload folder exists
os.makedirs(processing_folder, exist_ok=True)


UPLOAD_DIRS = {
    "pan_file": "uploads/pan/",
    "aadhar_file": "uploads/aadhar/",
    "gst_file": "uploads/gst/",
    "msme_file": "uploads/msme/",
    "cin_llpin_file": "uploads/cin_llpin/",
    "cheque_file": "uploads/cheque/",
}


process_dirs = {
    "aadhar_file": "processed_images/aadhar/",
    "pan_file": "processed_images/pan/",
    "cheque_file": "processed_images/cheque/",
    "gst_file": "processed_images/gst/",
    "msme_file": "processed_images/msme/",
    "cin_llpin_file": "processed_images/cin_llpin/",
}

# Ensure individual directories exist
for dir_path in UPLOAD_DIRS.values():
    os.makedirs(dir_path, exist_ok=True)

for dir_path in process_dirs.values():
    os.makedirs(dir_path, exist_ok=True)


# Logger configuration
logging.basicConfig(level=logging.INFO)


def perform_inference(file_paths: Dict[str, str], upload_to_s3: bool):
    model_dirs = {
        "pan_file": pan_model,
        "gst_file": gst_model,
        "cheque_file": cheque_model,
    }

    try:
        inference_results = {}

        for doc_type, file_path in file_paths.items():
            processed_file_p = file_path.split("&&")[
                0
            ]  # Extracted document number or processed image
            unprocessed_file_path = file_path.split("&&")[1]  # Original file path

            print(f"Processing {doc_type}: {processed_file_p}")

            # Determine the attachment number based on the document type
            attachment_num = {
                "pan_file": 2,
                "gst_file": 4,
                "msme_file": 5,
                "cin_llpin_file": 6,
                "cheque_file": 8,
            }.get(doc_type, None)

            if attachment_num is None:
                print(f"Skipping {doc_type}, not recognized.")
                continue

            # Upload file to S3 if required
            if upload_to_s3:
                client = s3_client()
                bucket_name = "edgekycdocs"
                if doc_type == "cin_llpin":
                    folder_name = f"{doc_type.replace('_', '')}docs"
                else:
                    folder_name = f"{doc_type.split('_')[0]}docs"

                file_name = unprocessed_file_path.split("/")[-1].replace(" ", "_")

                try:
                    response = client.upload_file(
                        unprocessed_file_path, bucket_name, folder_name, file_name
                    )
                    print("The file has been uploaded to S3 bucket", response)
                    attachment_url = response["url"]
                    print(f"File uploaded to S3: {attachment_url}")
                except Exception as e:
                    print(f"Failed to upload {file_name} to S3: {e}")
                    attachment_url = None
            else:
                attachment_url = None
            # If it's an OCR-based extraction (CIN, MSME, LLPIN, PAN, Aadhaar), return the extracted number
            if doc_type in ["msme_file", "cin_llpin_file", "aadhar_file"]:
                result = {
                    "attachment_num": processed_file_p,  # Extracted CIN, LLPIN, MSME, PAN, or Aadhaar number
                    "attachment_url": attachment_url,
                    "attachment_status": 200,
                    "detect": True,
                }
            else:
                # If the document needs ML model inference (PAN, GST, Cheque)
                if doc_type in model_dirs:
                    print(
                        f"Running ML inference for {doc_type} using {model_dirs[doc_type]}"
                    )

                    images_path = [processed_file_p]
                    inference_batch = prepare_batch_for_inference(images_path)

                    context = model_dirs[doc_type]
                    processor = globals()[f"processor_{doc_type.split('_')[0]}"]
                    name = doc_type.split("_")[0]

                    result = handle(inference_batch, context, processor, name)
                    result["attachment_url"] = attachment_url
                    result["detect"] = True
                else:
                    print(f"No model found for {doc_type}, skipping inference.")
                    continue

            inference_results[f"attachment_{attachment_num}"] = result

        return inference_results

    except Exception as e:
        print(f"Error in perform_inference: {e}")
        return {"status": "error", "message": "Text extraction failed."}


# Routes
@app.get("/")
def greet_json():
    return {"Hello": "World!"}


@app.post("/api/aadhar_ocr")
async def aadhar_ocr(

    aadhar_file: UploadFile = File(None),

    pan_file: UploadFile = File(None),

    cheque_file: UploadFile = File(None),

    gst_file: UploadFile = File(None),

    msme_file: UploadFile = File(None),

    cin_llpin_file: UploadFile = File(None),

    upload_to_s3: bool = True,

):
    # try:
    # Handle file uploads
    file_paths = {}
    for file_type, folder in UPLOAD_DIRS.items():
        file = locals()[file_type]  # Dynamically access the file arguments
        if file:
            # Save the file in the respective directory
            file_path = os.path.join(folder, file.filename)

            print("this is the filename", file.filename)
            with open(file_path, "wb") as buffer:
                shutil.copyfileobj(file.file, buffer)
            file_paths[file_type] = file_path

    # Log received files
    logging.info(f"Received files: {list(file_paths.keys())}")
    print("file_paths", file_paths)

    files = {}

    for key, f_path in file_paths.items():

        name = os.path.splitext(os.path.basename(f_path))[0]
        # Determine id_type: for cin_llpin_file, explicitly set id_type to "cin_llpin"
        if key == "cin_llpin_file":
            id_type = "cin_llpin"
        else:
            id_type = key.split("_")[0]
        doc_type = os.path.splitext(f_path)[-1].lstrip(".")

        if key in ["msme_file", "cin_llpin_file", "aadhar_file"]:
            extracted_number = extract_document_number_from_file(f_path, id_type)
            if not extracted_number:
                logging.error(f"Failed to extract document number from {f_path}")
                raise HTTPException(
                    status_code=400, detail=f"Invalid document format in {key}"
                )
            files[key] = extracted_number + "&&" + f_path
            print("files", files[key])
        else:
            # For other files, use existing preprocessing.
            preprocessing = doc_processing(name, id_type, doc_type, f_path)
            response = preprocessing.process()
            files[key] = response["output_p"] + "&&" + f_path

    # Perform inference
    result = perform_inference(files, upload_to_s3)

    print("this is the result we got", result)
    if "status" in list(result.keys()):
        raise Exception("Custom error message")
    # if result["status"] == "error":

    return {"status": "success", "result": result}


@app.post("/api/document_ocr")
async def document_ocr_s3(request: Request):
    try:
        body = await request.json()  # Read JSON body
        logging.info(f"Received request body: {body}")
    except Exception as e:
        logging.error(f"Failed to parse JSON request: {e}")
        raise HTTPException(status_code=400, detail="Invalid JSON payload")

    # Extract file URLs
    url_mapping = {
        "pan_file": body.get("pan_file"),
        "gst_file": body.get("gst_file"),
        "msme_file": body.get("msme_file"),
        "cin_llpin_file": body.get("cin_llpin_file"),
        "cheque_file": body.get("cheque_file"),
    }
    upload_to_s3 = body.get("upload_to_s3", False)
    logging.info(f"URL Mapping: {url_mapping}")
    file_paths = {}
    for file_type, url in url_mapping.items():
        if url:
            # local_filename = url.split("/")[-1]
            local_filename = urllib.parse.unquote(url.split("/")[-1]).replace(" ", "_")
            file_path = os.path.join(UPLOAD_DIRS[file_type], local_filename)

            try:
                logging.info(f"Attempting to download {url} for {file_type}...")
                response = requests.get(url, stream=True)
                response.raise_for_status()

                with open(file_path, "wb") as buffer:
                    shutil.copyfileobj(response.raw, buffer)

                file_paths[file_type] = file_path
                logging.info(f"Successfully downloaded {file_type} to {file_path}")

            except requests.exceptions.RequestException as e:
                logging.error(f"Failed to download {url}: {e}")
                raise HTTPException(
                    status_code=400, detail=f"Failed to download file from {url}"
                )

    logging.info(f"Downloaded files: {list(file_paths.keys())}")

    files = {}

    for key, f_path in file_paths.items():
        name = f_path.split("/")[-1].split(".")[0]
        if key == "cin_llpin_file":
            id_type = "cin_llpin"
        else:
            id_type = key.split("_")[0]
        # id_type = key.split("_")[0]
        doc_type = f_path.split("/")[-1].split(".")[-1]

        # For MSME and CIN/LLPIN files, extract document number via OCR and regex
        if key in ["msme_file", "cin_llpin_file", "aadhar_file"]:
            extracted_number = extract_document_number_from_file(f_path, id_type)
            if not extracted_number:
                logging.error(f"Failed to extract document number from {f_path}")
                raise HTTPException(
                    status_code=400, detail=f"Invalid document format in {key}"
                )
            files[key] = extracted_number + "&&" + f_path
        else:
            # For other documents, use the existing ML model preprocessing
            preprocessing = doc_processing(name, id_type, doc_type, f_path)
            response = preprocessing.process()
            files[key] = response["output_p"] + "&&" + f_path

    result = perform_inference(files, upload_to_s3)

    if "status" in list(result.keys()):
        raise HTTPException(status_code=500, detail="Custom error message")

    return {"status": "success", "result": result}