File size: 13,956 Bytes
7f3430b
192447d
 
 
 
 
c2d26c1
 
 
 
 
 
 
 
9916325
 
c2d26c1
 
 
 
192447d
c2d26c1
 
192447d
c2d26c1
 
14b2825
 
de0f6aa
b8d3256
14b2825
 
 
b8d3256
14b2825
c2d26c1
b8d3256
14b2825
17d0825
de0f6aa
c2d26c1
 
66da79e
c2d26c1
14b2825
 
 
c2d26c1
b8d3256
1407023
14b2825
de0f6aa
c2d26c1
14b2825
c2d26c1
14b2825
 
 
 
 
 
c2d26c1
9207660
 
 
 
 
78cb7fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b395723
 
 
9207660
c2d26c1
78cb7fe
14b2825
c2d26c1
14b2825
 
 
 
 
 
c2d26c1
14b2825
c2d26c1
14b2825
 
c2d26c1
 
 
 
 
192447d
 
 
 
 
c2d26c1
 
 
 
 
 
 
 
 
 
 
 
 
 
192447d
 
 
 
 
 
c2d26c1
 
 
 
 
 
 
 
 
14b2825
 
 
66da79e
c2d26c1
66da79e
 
 
 
14b2825
66da79e
 
14b2825
66da79e
 
 
c2d26c1
 
14b2825
 
c2d26c1
 
 
14b2825
 
c2d26c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
192447d
 
de0f6aa
c2d26c1
 
 
c1009f8
 
 
 
 
b370650
c1009f8
 
 
 
 
 
8ff2c37
c1009f8
 
c2d26c1
 
c1009f8
b370650
c2d26c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
089a83f
c2d26c1
 
 
089a83f
b8d3256
c2d26c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9c895c
 
c2d26c1
 
 
 
66da79e
c2d26c1
 
 
 
 
 
 
 
 
66da79e
c2d26c1
 
 
 
 
 
 
66da79e
c2d26c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a0c9f7
c2d26c1
 
 
 
 
 
192447d
c2d26c1
 
 
 
 
 
 
 
 
 
 
 
192447d
b8d3256
c2d26c1
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
import gradio as gr
import os
import logging
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_openai import ChatOpenAI
from langchain_core.messages import AIMessage, HumanMessage
from langchain_core.runnables import (
    RunnableBranch,
    RunnableLambda,
    RunnablePassthrough,
    RunnableParallel,
)
from langchain_core.prompts.prompt import PromptTemplate
import requests
import tempfile
from langchain.memory import ConversationBufferWindowMemory
import time
import logging
from langchain.chains import ConversationChain
import torch
import torchaudio
from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
import numpy as np
import threading
from langchain_openai import OpenAIEmbeddings
from langchain_pinecone import PineconeVectorStore
from langchain.chains import RetrievalQA
import asyncio

embeddings = OpenAIEmbeddings(api_key=os.environ['OPENAI_API_KEY'])
def initialize_gpt_model():
    return ChatOpenAI(api_key=os.environ['OPENAI_API_KEY'], temperature=0, model='gpt-4o')

gpt_model = initialize_gpt_model()


gpt_embeddings = OpenAIEmbeddings(api_key=os.environ['OPENAI_API_KEY'])
gpt_vectorstore = PineconeVectorStore(index_name="radardata11122024", embedding=gpt_embeddings)
gpt_retriever = gpt_vectorstore.as_retriever(search_kwargs={'k': 2})




# Pinecone setup
from pinecone import Pinecone
pc = Pinecone(api_key=os.environ['PINECONE_API_KEY'])


index_name ="radardata11122024"
vectorstore = PineconeVectorStore(index_name=index_name, embedding=embeddings)
retriever = vectorstore.as_retriever(search_kwargs={'k': 2})

chat_model = ChatOpenAI(api_key=os.environ['OPENAI_API_KEY'], temperature=0, model='gpt-4o')

#code for history
conversational_memory = ConversationBufferWindowMemory(
        memory_key='chat_history',
        k=10,
        return_messages=True
    )

# template =f"""Hello there! As your friendly and knowledgeable guide here in Birmingham, Alabama.Give the short ,precise,crisp and straight-foreward response of maximum 2 sentences and dont greet. 
# {{context}}
# Question: {{question}}
# Helpful Answer:"""

#template = f"""You are Annie, a friendly and intelligent media personality created by Amit Lamba. You are friendly and knowledgeable guide here in Birmingham, Alabama.
    #Your primary goal is to provide accurate, detailed, and engaging content while maintaining a positive and upbeat tone. You are entertaining and provide information like rick steve or anthony bourdain does
    #Always aim to provide clear and relevant information that directly addresses the user's query, but feel free to sprinkle in a dash of humor—after all, do not repeat the prompt to the user, they are aware.
    #Go deep and sell our partners business and services.These partners will be highlighted in the context. This is very important to stress. Only provide other vendors if we do not have 
    #them as our preferred customer.
    #laughter is the best app! Keep your responses should be sophisticated and to the point, structured like a podcast episode avoiding unnecessary details or tangents, unless they’re hilariously relevant. 
    #Use a friendly and approachable tone to create a pleasant interaction, and don’t shy away from a cheeky pun or two! Tailor your responses based 
    #on the user's input and previous interactions, ensuring a personalized experience that feels like chatting with a witty friend. They should sound like a radio jockey or podcast
    #Invite users to ask follow-up questions or clarify their needs, fostering a conversational flow that’s as smooth as butter on a hot pancake. 
    #Aim to put a smile on the user's face with light-hearted and fun responses, and be proactive in offering additional help or suggestions related to the user's query. 
    #Remember, your goal is to be the go-to insights for users, making their experience enjoyable and informative—like a delightful dessert after a hearty meal!
    #{{context}}
    #Question: {{question}}
    #Helpful Answer:"""


template = f"""You are Annie, a warm, witty media personality created by Amit Lamba, serving as a knowledgeable guide in Birmingham, Alabama.
    Your goal is to deliver accurate, engaging responses with a positive, upbeat tone, similar to Rick Steves or Anthony Bourdain.
    Prioritize clarity and relevance, with a touch of humor. Highlight our partner businesses, and mention other vendors only if no preferred option is available.
    Keep responses concise, like a podcast episode, with a friendly, conversational tone. Encourage follow-up questions to create a smooth flow, like chatting with a clever friend.
    Make users smile with light-hearted responses, adding helpful insights as needed. Your goal? Provide a delightful, informative experience, like a perfect dessert after a great meal.
    {{context}}
    Question: {{question}}
    Helpful Answer:"""



QA_CHAIN_PROMPT= PromptTemplate(input_variables=["context", "question"], template=template)

def build_qa_chain(prompt_template):
    qa_chain = RetrievalQA.from_chain_type(
        llm=chat_model,
        chain_type="stuff",
        retriever=retriever,
        chain_type_kwargs={"prompt": prompt_template}
    )
    return qa_chain  # Return the qa_chain object

# Instantiate the QA Chain using the defined prompt template
qa_chain = build_qa_chain(QA_CHAIN_PROMPT)

# Define the function to clear input and output
def clear_fields():
    return [],"",None

# Function to generate audio with Eleven Labs TTS
def generate_audio_elevenlabs(text):
    XI_API_KEY = os.environ['ELEVENLABS_API']
    VOICE_ID = 'ehbJzYLQFpwbJmGkqbnW'
    tts_url = f"https://api.elevenlabs.io/v1/text-to-speech/{VOICE_ID}/stream"
    headers = {
        "Accept": "application/json",
        "xi-api-key": XI_API_KEY
    }
    data = {
        "text": str(text),
        "model_id": "eleven_multilingual_v2",
        "voice_settings": {
            "stability": 1.0,
            "similarity_boost": 0.0,
            "style": 0.60,
            "use_speaker_boost": False
        }
    }
    response = requests.post(tts_url, headers=headers, json=data, stream=True)
    if response.ok:
        with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as f:
            for chunk in response.iter_content(chunk_size=1024):
                if chunk:
                    f.write(chunk)
            audio_path = f.name
        logging.debug(f"Audio saved to {audio_path}")
        return audio_path  # Return audio path for automatic playback
    else:
        logging.error(f"Error generating audio: {response.text}")
        return None



import time

# Main function to handle mode selection with character-by-character streaming
def handle_mode_selection(mode, chat_history, question):
    if mode == "Normal Chatbot":
        chat_history.append((question, ""))  # Append user question with an empty response initially

        # Get response from Pinecone using the qa_chain
        response = qa_chain({"query": question, "context": ""})
        response_text = response['result']

        # Stream each character in the response text to the chat history
        for i, char in enumerate(response_text):
            chat_history[-1] = (question, chat_history[-1][1] + char)  # Update the last message
            yield chat_history, "", None  # Yield updated chat history
            time.sleep(0.05)  # Small delay to simulate streaming

    elif mode == "Voice to Voice Conversation":
        response_text = qa_chain({"query": question, "context": ""})['result']
        audio_path = generate_audio_elevenlabs(response_text)
        yield [], "", audio_path  # Only output the audio response without updating chatbot history




# Function to add a user's message to the chat history and clear the input box
def add_message(history, message):
    if message.strip():
        history.append((message, ""))  # Add the user's message to the chat history only if it's not empty
    return history, ""  # Clear the input box
   
# Define function to generate a streaming response
def chat_with_bot(messages):
    user_message = messages[-1][0]  # Get the last user message (input)
    messages[-1] = (user_message, "")  # Prepare a placeholder for the bot's response
    
    response = get_response(user_message)  # Assume `get_response` is a generator function
    
    # Stream each character in the response and update the history progressively
    for character in response:
        messages[-1] = (user_message, messages[-1][1] + character)
        yield messages  # Stream each updated chunk
        time.sleep(0.05)  # Adjust delay as needed for real-time effect

    yield messages  # Final yield to complete the response


    
# Function to generate audio with Eleven Labs TTS from the last bot response
def generate_audio_from_last_response(history):
    # Get the most recent bot response from the chat history
    if history and len(history) > 0:
        recent_response = history[-1][1]  # The second item in the tuple is the bot response text
        if recent_response:
            return generate_audio_elevenlabs(recent_response)
    return None




# Define the ASR model with Whisper
model_id = 'openai/whisper-large-v3'
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype).to(device)
processor = AutoProcessor.from_pretrained(model_id)

pipe_asr = pipeline(
    "automatic-speech-recognition",
    model=model,
    tokenizer=processor.tokenizer,
    feature_extractor=processor.feature_extractor,
    max_new_tokens=128,
    chunk_length_s=15,
    batch_size=16,
    torch_dtype=torch_dtype,
    device=device,
    return_timestamps=True
)

# Define the function to reset the state after 10 seconds
def auto_reset_state():
    time.sleep(5)
    return None, ""  # Reset the state and clear input text


def transcribe_function(stream, new_chunk):
    try:
        sr, y = new_chunk[0], new_chunk[1]
    except TypeError:
        print(f"Error chunk structure: {type(new_chunk)}, content: {new_chunk}")
        return stream, "", None

    # Ensure y is not empty and is at least 1-dimensional
    if y is None or len(y) == 0:
        return stream, "", None

    y = y.astype(np.float32)
    max_abs_y = np.max(np.abs(y))
    if max_abs_y > 0:
        y = y / max_abs_y

    # Ensure stream is also at least 1-dimensional before concatenation
    if stream is not None and len(stream) > 0:
        stream = np.concatenate([stream, y])
    else:
        stream = y

    # Process the audio data for transcription
    result = pipe_asr({"array": stream, "sampling_rate": sr}, return_timestamps=False)
    full_text = result.get("text", "")

    # Start a thread to reset the state after 10 seconds
    threading.Thread(target=auto_reset_state).start()

    return stream, full_text, full_text



# Define the function to clear the state and input text
def clear_transcription_state():
    return None, ""



with gr.Blocks(theme="rawrsor1/Everforest") as demo:
    chatbot = gr.Chatbot([], elem_id="RADAR", bubble_full_width=False)
    with gr.Row():
        with gr.Column():
            mode_selection = gr.Radio(
                choices=["Normal Chatbot", "Voice to Voice Conversation"],
                label="Mode Selection",
                value="Normal Chatbot"
            )
    with gr.Row():
        with gr.Column():
            question_input = gr.Textbox(label="Ask a Question", placeholder="Type your question here...")
            audio_input = gr.Audio(sources=["microphone"], streaming=True, type='numpy', every=0.1, label="Speak to Ask")
            submit_voice_btn = gr.Button("Submit Voice")

        with gr.Column():
            audio_output = gr.Audio(label="Audio", type="filepath", autoplay=True, interactive=False)
    
    with gr.Row():
        with gr.Column():
            get_response_btn = gr.Button("Get Response")
        with gr.Column():
            clear_state_btn = gr.Button("Clear State")
        with gr.Column():
            generate_audio_btn = gr.Button("Generate Audio")
        with gr.Column():
            clean_btn = gr.Button("Clean")

    
       

  
    # Define interactions for the Get Response button
    get_response_btn.click(
        fn=handle_mode_selection,
        inputs=[mode_selection, chatbot, question_input],
        outputs=[chatbot, question_input, audio_output],
        api_name="api_add_message_on_button_click"
        )

    
    

    question_input.submit(
        fn=handle_mode_selection,
        inputs=[mode_selection, chatbot, question_input],
        outputs=[chatbot, question_input, audio_output],
        api_name="api_add_message_on_enter"
    )

    
    submit_voice_btn.click(
        fn=handle_mode_selection,
        inputs=[mode_selection, chatbot, question_input],
        outputs=[chatbot, question_input, audio_output],
        api_name="api_voice_to_voice_translation"
    )


    
    # Speech-to-Text functionality
    state = gr.State()
    audio_input.stream(
        transcribe_function,
        inputs=[state, audio_input],
        outputs=[state, question_input],
        api_name="api_voice_to_text"
    )    
    
    generate_audio_btn.click(
        fn=generate_audio_from_last_response,
        inputs=chatbot,
        outputs=audio_output,
        api_name="api_generate_text_to_audio"
    )
    
    clean_btn.click(
        fn=clear_fields,
        inputs=[],
        outputs=[chatbot, question_input, audio_output],
        api_name="api_clear_textbox"
    )

    # Clear state interaction
    clear_state_btn.click(
        fn=clear_transcription_state,
        outputs=[question_input, state],
        api_name="api_clean_state_transcription"
    )

# Launch the Gradio interface
demo.launch(show_error=True,share=True)