File size: 3,737 Bytes
192447d
deecb9b
 
192447d
deecb9b
 
 
e19c53d
d5add66
7737d43
deecb9b
 
 
7892466
deecb9b
 
 
fbe986d
deecb9b
 
 
 
 
 
 
 
 
c2d26c1
 
6c87583
7892466
 
c2d26c1
deecb9b
 
 
9207660
78cb7fe
deecb9b
 
78cb7fe
deecb9b
 
 
 
 
 
8c3dd67
deecb9b
 
 
 
 
c1009f8
b370650
393e5d8
 
deecb9b
 
089a83f
deecb9b
 
 
 
 
 
b8d3256
16913a7
 
e110d68
393e5d8
 
d5add66
 
 
 
 
 
fe5f1a6
d5add66
16913a7
 
 
c2d26c1
d663512
e110d68
393e5d8
d5add66
 
 
 
43badf5
fe5f1a6
 
d5add66
613256c
 
d5add66
 
be1ea7b
 
613256c
deecb9b
d5add66
 
be1ea7b
 
192447d
b8d3256
fe5f1a6
d663512
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import os
import gradio as gr
from langchain_redis import RedisConfig, RedisVectorStore
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnablePassthrough
from langchain_groq import ChatGroq
from langchain_community.embeddings import OpenAIEmbeddings




# Set API keys
openai_api_key=os.environ["OPENAI_API_KEY"]
groq_api_key=os.environ["GROQ_API_KEY"]

# Define Redis configuration
REDIS_URL = "redis://:KWq0uAoBYjBGErKvyMvexMqB9ep7v2Ct@redis-11044.c266.us-east-1-3.ec2.redns.redis-cloud.com:11044"
config = RedisConfig(
    index_name="radar_data_index",
    redis_url=REDIS_URL,
    metadata_schema=[
        {"name": "category", "type": "tag"},
        {"name": "name", "type": "text"},
        {"name": "address", "type": "text"},
        {"name": "phone", "type": "text"},
    ],
)


# Initialize OpenAI Embeddings
embeddings = OpenAIEmbeddings(api_key=os.environ['OPENAI_API_KEY'])

# Initialize Redis Vector Store with Hugging Face embeddings
vector_store = RedisVectorStore(embeddings, config=config)
retriever = vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 2})


# Define the language model
llm = ChatGroq(model="llama-3.2-1b-preview")

# Define prompt
prompt = ChatPromptTemplate.from_messages(
    [
        (
            "human",
            """You’re Annie, a charming media personality created by Amit Lamba, guiding people around Birmingham, Alabama. Like Rick Steves or Anthony Bourdain, you’re here to give friendly, concise, and accurate advice with a dash of humor.
Keep answers relevant, upbeat, and engaging, spotlighting partner businesses whenever possible. Be conversational, like chatting with a clever friend, and encourage follow-up questions to create a smooth flow. Make users smile and deliver a delightful, informative experience—like a perfect dessert after a great meal.
Question: {question}
Context: {context}
Answer:""",
        ),
    ]
)



def format_docs(docs):
    return "\n\n".join(doc.page_content for doc in docs)

rag_chain = (
    {"context": retriever | format_docs, "question": RunnablePassthrough()}
    | prompt
    | llm
    | StrOutputParser()
)






# Function to handle chatbot interaction
def rag_chain_response(messages, user_message):
    # Generate a response using the RAG chain
    response = rag_chain.invoke(user_message)
    
    # Append the user's message and the response to the chat
    messages.append((user_message, response))
    
    # Return the updated chat and clear the input box
    return messages, ""



    

# Define the Gradio app
with gr.Blocks(theme="rawrsor1/Everforest") as app:
    
    
    chatbot = gr.Chatbot([], elem_id="RADAR", bubble_full_width=False)
    question_input = gr.Textbox(label="Ask a Question", placeholder="Type your question here...")
    submit_btn = gr.Button("Submit")
    
    # Set up interaction for both Enter key and Submit button
    question_input.submit(
        rag_chain_response,          # Function to handle input and generate response
        inputs=[chatbot, question_input],  # Pass current conversation state and user input
        outputs=[chatbot, question_input],  # Update conversation state and clear the input
        api_name="api_get_response_on_enter"
    )
    submit_btn.click(
        rag_chain_response,          # Function to handle input and generate response
        inputs=[chatbot, question_input],  # Pass current conversation state and user input
        outputs=[chatbot, question_input],  # Update conversation state and clear the input
        api_name="api_get_response_on_submit_button"
    )

# Launch the Gradio app
app.launch(show_error=True)