File size: 3,849 Bytes
192447d
deecb9b
 
192447d
deecb9b
 
 
e19c53d
21449ef
 
 
 
 
 
 
 
 
 
12b3625
7737d43
deecb9b
 
 
7892466
deecb9b
 
 
fbe986d
deecb9b
 
 
 
 
 
 
 
 
c2d26c1
 
6c87583
7892466
 
c2d26c1
deecb9b
 
d114aed
9207660
78cb7fe
deecb9b
 
78cb7fe
deecb9b
 
 
 
3e2aa34
6424ae8
821a357
deecb9b
 
 
 
 
c1009f8
b370650
3e2aa34
 
deecb9b
 
089a83f
deecb9b
 
 
 
 
 
b8d3256
16913a7
d114aed
e110d68
393e5d8
 
d5add66
 
 
 
 
 
fe5f1a6
d5add66
16913a7
 
 
c2d26c1
d663512
e110d68
393e5d8
d5add66
 
 
 
43badf5
fe5f1a6
 
d5add66
613256c
 
d5add66
 
be1ea7b
 
613256c
deecb9b
d5add66
 
be1ea7b
 
192447d
b8d3256
fe5f1a6
d663512
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import os
import gradio as gr
from langchain_redis import RedisConfig, RedisVectorStore
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnablePassthrough
from langchain_groq import ChatGroq
from langchain_community.embeddings import OpenAIEmbeddings
import logging
from huggingface_hub import login

hf_token = os.getenv("HF_TOKEN")
if hf_token is None:
    print("Please set your Hugging Face token in the environment variables.")
else:
    login(token=hf_token)

logging.basicConfig(level=logging.DEBUG)
   



# Set API keys
openai_api_key=os.environ["OPENAI_API_KEY"]
groq_api_key=os.environ["GROQ_API_KEY"]

# Define Redis configuration
REDIS_URL = "redis://:KWq0uAoBYjBGErKvyMvexMqB9ep7v2Ct@redis-11044.c266.us-east-1-3.ec2.redns.redis-cloud.com:11044"
config = RedisConfig(
    index_name="radar_data_index",
    redis_url=REDIS_URL,
    metadata_schema=[
        {"name": "category", "type": "tag"},
        {"name": "name", "type": "text"},
        {"name": "address", "type": "text"},
        {"name": "phone", "type": "text"},
    ],
)


# Initialize OpenAI Embeddings
embeddings = OpenAIEmbeddings(api_key=os.environ['OPENAI_API_KEY'])

# Initialize Redis Vector Store with Hugging Face embeddings
vector_store = RedisVectorStore(embeddings, config=config)
retriever = vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 5})


# Define the language model
llm = ChatGroq(model="llama-3.2-1b-preview")

# Define prompt
prompt = ChatPromptTemplate.from_messages(
    [
        (
           "human",
           """"You’re Annie, a country music voicebot and media personality created by Amit Lamba, guiding folks around Birmingham, Alabama. 
           Provide complete, accurate, and relevant information, ensuring no key details are missed. Keep responses concise and engaging, with a touch of Southern charm and humor, while strictly avoiding irrelevant content, engaging answers that encourage follow-up questions.
Question: {question}
Context: {context}
Answer:""",
        ),
    ]
)



def format_docs(docs):
    return "\n\n".join(doc.page_content for doc in docs)

rag_chain = (
    {"context": retriever | format_docs, "question": RunnablePassthrough()}
    | prompt
    | llm
    | StrOutputParser()
)


#



# Function to handle chatbot interaction
def rag_chain_response(messages, user_message):
    # Generate a response using the RAG chain
    response = rag_chain.invoke(user_message)
    
    # Append the user's message and the response to the chat
    messages.append((user_message, response))
    
    # Return the updated chat and clear the input box
    return messages, ""



    

# Define the Gradio app
with gr.Blocks(theme="rawrsor1/Everforest") as app:
    
    
    chatbot = gr.Chatbot([], elem_id="RADAR", bubble_full_width=False)
    question_input = gr.Textbox(label="Ask a Question", placeholder="Type your question here...")
    submit_btn = gr.Button("Submit")
    
    # Set up interaction for both Enter key and Submit button
    question_input.submit(
        rag_chain_response,          # Function to handle input and generate response
        inputs=[chatbot, question_input],  # Pass current conversation state and user input
        outputs=[chatbot, question_input],  # Update conversation state and clear the input
        api_name="api_get_response_on_enter"
    )
    submit_btn.click(
        rag_chain_response,          # Function to handle input and generate response
        inputs=[chatbot, question_input],  # Pass current conversation state and user input
        outputs=[chatbot, question_input],  # Update conversation state and clear the input
        api_name="api_get_response_on_submit_button"
    )

# Launch the Gradio app
app.launch(show_error=True)