Spaces:
Build error
Build error
File size: 8,972 Bytes
7f3430b 3ce55e9 7f3430b 2acce8f b43948a 0839454 7ee8ac6 b43948a 2cdc542 f9fb482 92b0167 b43948a 08b4bf1 b43948a a39286d 1d36ddd b1c78f7 c3b4a98 9ce0d19 1568ea2 92b0167 663f47f 08b4bf1 5e64098 08b4bf1 5e64098 08b4bf1 5e64098 08b4bf1 7f3430b b43948a b1c78f7 4af9484 b1c78f7 4af9484 37b51d2 304b6f1 37b51d2 304b6f1 4af9484 37b51d2 e0a04c7 5e64098 08b4bf1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
import gradio as gr
import pdfplumber
import os
from langchain.schema import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings import OpenAIEmbeddings
from langchain.vectorstores import Pinecone
import pinecone
import pandas as pd
import time
from pinecone.grpc import PineconeGRPC as Pinecone
from pinecone import ServerlessSpec
from langchain_pinecone import PineconeVectorStore
from datetime import datetime
import os
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import Pinecone
from typing import TypedDict,List
from langgraph.graph import StateGraph
from langgraph.prebuilt import ToolNode
from langchain.schema import Document
from langchain.prompts import PromptTemplate
from langchain.tools import Tool
from langchain.llms import OpenAI
# OpenAI API key
openai_api_key = os.getenv("OPENAI_API_KEY")
# Embedding using OpenAI
embeddings = OpenAIEmbeddings(api_key=openai_api_key)
# Initialize Pinecone with PineconeGRPC
from pinecone import Pinecone
# pc = Pinecone(api_key=os.environ['PINECONE_API_KEY'])
# # Define index name and parameters
# index_name = "italy-kg"
# vectorstore = PineconeVectorStore(index_name=index_name, embedding=embeddings)
#Dynamic Pinecone Creation
# Function to initialize Pinecone dynamically and create index if it doesn't exist
def init_pinecone(api_key, index_name):
pinecone.init(api_key=api_key, environment="us-east-1")
pc = Pinecone(api_key=api_key)
# Check if index exists, create if not
if index_name not in pc.list_indexes():
pc.create_index(
name=index_name,
dimension=1536,
metric="cosine",
spec=ServerlessSpec(
cloud="aws",
region="us-east-1"
),
deletion_protection="disabled"
)
vectorstore = PineconeVectorStore(index_name=index_name, embedding=embeddings)
return vectorstore
llm=OpenAI(temperature=0,openai_api_key=openai_api_key)
# Tool functions
def search_vector_db(query: str, k: int = 3) -> List[Document]:
docs = vectorstore.similarity_search(query, k=k)
return docs
def expand_query(query: str) -> str:
return query
def summarize_context(context: str) -> str:
prompt = PromptTemplate(template="""Summarize the following Context to provide a concise overview: {context}""")
summary = llm(prompt.format(context=context))
return summary.strip()
def generate_response(context: str, query: str) -> str:
prompt = PromptTemplate(template="""Question: {question}\nContext: {context}\nAnswer:""")
formatted_prompt = prompt.format(context=context, question=query)
response = llm(formatted_prompt)
return response.strip()
# Tool objects
expand_tool = Tool(
name="Expand Query",
func=expand_query,
description="Enhance the query with additional terms or context"
)
summarize_tool = Tool(
name="Summarize Context",
func=summarize_context,
description="Summarize the context to provide a concise overview"
)
search_tool = Tool(
name="Search Vector Database",
func=search_vector_db,
description="Search the vector database for relevant information"
)
generate_tool = Tool(
name="Generate Response",
func=generate_response,
description="Generate a response based on the context and query"
)
# State for the graph
class State(TypedDict):
question: str
context: List[Document]
response: str
expanded_query: str
summarized_context: str
# Workflow node definitions
def expand(state: State) -> State:
state["expanded_query"] = expand_tool.func(state["question"]) # Expand the query
return state
def search(state: State) -> State:
results = search_tool.func(state["expanded_query"]) # Search using the expanded query
state["context"] = results
print(f"Retrieved Documents: {[doc.page_content[:100] for doc in results]}")
return state
def summarize(state: State) -> State:
context = " ".join(doc.page_content for doc in state["context"]) if state["context"] else ""
state["summarized_context"] = summarize_tool.func(context)
print(f"Summarized Context: {state['summarized_context']}")
return state
def generate(state: State) -> State:
response = generate_tool.func(state["summarized_context"], state["question"])
state["response"] = response
print(f"Generated Response: {state['response']}")
return state
# Workflow graph
workflow = StateGraph(State)
workflow.add_node("expand", expand)
workflow.add_node("search", search)
workflow.add_node("summarize", summarize)
workflow.add_node("generate", generate)
workflow.set_entry_point("expand")
workflow.add_edge("expand", "search")
workflow.add_edge("search", "summarize")
workflow.add_edge("summarize", "generate")
workflow.set_finish_point("generate")
graph = workflow.compile()
# Function to run the graph
def run_graph(question: str):
result = graph.invoke({"question": question})
return result["response"]
# Function to clear the input and response
def clear_inputs():
return "", "" # Return empty strings for both the query input and response output
# Create a global list to store uploaded document records
uploaded_documents = []
# Function to process PDF, extract text, split it into chunks, and upload to the vector DB
def process_pdf(pdf_file, uploaded_documents):
if pdf_file is None:
return uploaded_documents, "No PDF file uploaded."
with pdfplumber.open(pdf_file.name) as pdf:
all_text = ""
for page in pdf.pages:
all_text += page.extract_text()
# Split the text into chunks
text_splitter = RecursiveCharacterTextSplitter(chunk_size=300, chunk_overlap=50)
chunks = text_splitter.split_text(all_text)
# Embed and upload the chunks into the vector database
chunk_ids = []
for chunk in chunks:
document = Document(page_content=chunk)
chunk_id = vectorstore.add_documents([document])
chunk_ids.append(chunk_id)
# Update the upload history
document_record = {
"Document Name": pdf_file.name,
"Upload Time": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"Chunks": len(chunks),
"Pinecone Index": index_name
}
# Add the record to the global list
uploaded_documents.append(document_record)
# Convert the list of dictionaries into a list of lists for the dataframe
table_data = [[doc["Document Name"], doc["Upload Time"], doc["Chunks"], doc["Pinecone Index"]] for doc in uploaded_documents]
return table_data, f"Uploaded {len(chunks)} chunks to the vector database."
# Gradio Interface
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
# Add Pinecone Index and API Key fields side by side
pinecone_index_input = gr.Textbox(label="Pinecone Index Name", placeholder="Enter Pinecone Index Name")
with gr.Column():
pinecone_api_key_input = gr.Textbox(label="Pinecone API Key", placeholder="Enter Pinecone API Key")
with gr.Row():
with gr.Column():
response_output = gr.Textbox(label="Response:", lines=10, max_lines=10)
query_input = gr.Textbox(label="Enter your query:")
with gr.Row():
query_button = gr.Button("Get Response")
clear_button = gr.Button("Clear") # New Clear button
query_button.click(fn=run_graph, inputs=query_input, outputs=response_output)
clear_button.click(fn=clear_inputs, inputs=[], outputs=[query_input, response_output]) # Clear both input and output
with gr.Column():
file_input = gr.File(label="Upload PDF", file_types=[".pdf"])
document_table = gr.Dataframe(headers=["Document Name", "Upload Time", "Chunks", "Pinecone Index"], interactive=False)
output_textbox = gr.Textbox(label="Result")
process_button = gr.Button("Process PDF and Upload")
process_button.click(fn=process_pdf, inputs=[file_input, gr.State([])], outputs=[document_table, output_textbox])
# When the process button is clicked, dynamically initialize Pinecone with API key and index name
def process_with_dynamic_pinecone(pdf_file, uploaded_documents, pinecone_index_name, pinecone_api_key):
vectorstore = init_pinecone(pinecone_api_key, pinecone_index_name)
return process_pdf(pdf_file, uploaded_documents, vectorstore)
process_button.click(fn=process_with_dynamic_pinecone,
inputs=[file_input, gr.State([]), pinecone_index_input, pinecone_api_key_input],
outputs=[document_table, output_textbox])
demo.launch(show_error=True) |