Spaces:
Runtime error
Runtime error
File size: 3,180 Bytes
7f3430b 3ce55e9 7f3430b 2acce8f b43948a 0839454 7ee8ac6 b43948a 2cdc542 f9fb482 b43948a 08b4bf1 b43948a a39286d b43948a 08b4bf1 9ce0d19 1568ea2 563a689 9ce0d19 08b4bf1 5e64098 08b4bf1 5e64098 08b4bf1 5e64098 08b4bf1 7f3430b b43948a 0f10bbc 5e64098 92489c1 5e64098 08b4bf1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
import gradio as gr
import pdfplumber
import os
from langchain.schema import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings import OpenAIEmbeddings
from langchain.vectorstores import Pinecone
import pinecone
import pandas as pd
import time
from pinecone.grpc import PineconeGRPC as Pinecone
from pinecone import ServerlessSpec
from langchain_pinecone import PineconeVectorStore
from datetime import datetime
# OpenAI API key
openai_api_key = os.getenv("OPENAI_API_KEY")
# Embedding using OpenAI
embeddings = OpenAIEmbeddings(api_key=openai_api_key)
# Initialize Pinecone with PineconeGRPC
from pinecone import Pinecone
pc = Pinecone(api_key=os.environ['PINECONE_API_KEY'])
# Define index name and parameters
index_name = "italy-kg"
vectorstore = PineconeVectorStore(index_name=index_name, embedding=embeddings)
# Create a global list to store uploaded document records
uploaded_documents = []
# Function to process PDF, extract text, split it into chunks, and upload to the vector DB
def process_pdf(pdf_file, uploaded_documents):
if pdf_file is None:
return uploaded_documents, "No PDF file uploaded."
with pdfplumber.open(pdf_file.name) as pdf:
all_text = ""
for page in pdf.pages:
all_text += page.extract_text()
# Split the text into chunks
text_splitter = RecursiveCharacterTextSplitter(chunk_size=300, chunk_overlap=50)
chunks = text_splitter.split_text(all_text)
# Embed and upload the chunks into the vector database
chunk_ids = []
for chunk in chunks:
document = Document(page_content=chunk)
chunk_id = vectorstore.add_documents([document])
chunk_ids.append(chunk_id)
# Update the upload history
document_record = {
"Document Name": pdf_file.name,
"Upload Time": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"Chunks": len(chunks),
"Pinecone Index": index_name
}
# Add the record to the global list
uploaded_documents.append(document_record)
# Convert the list of dictionaries into a list of lists for the dataframe
table_data = [[doc["Document Name"], doc["Upload Time"], doc["Chunks"], doc["Pinecone Index"]] for doc in uploaded_documents]
return table_data, f"Uploaded {len(chunks)} chunks to the vector database."
# Gradio Interface
with gr.Blocks() as demo:
gr.Markdown("# PDF Uploader to Pinecone with Logs")
# File upload component
with gr.Column():
file_input = gr.File(label="Upload PDF", file_types=[".pdf"])
# Button to trigger processing
process_button = gr.Button("Process PDF and Upload")
# Dataframe to display uploaded document records
document_table = gr.Dataframe(headers=["Document Name", "Upload Time", "Chunks", "Pinecone Index"], interactive=False)
# Output textbox for results
output_textbox = gr.Textbox(label="Result")
# Define button click action
process_button.click(fn=process_pdf, inputs=[file_input, gr.State([])], outputs=[document_table, output_textbox])
demo.queue()
demo.launch(show_error=True) |