Spaces:
Runtime error
Runtime error
File size: 9,356 Bytes
7bc1fb2 a90aae5 8784af6 9677df9 8784af6 e234712 fc092d3 f80653e d733a1d a90aae5 292fc01 49e6c2a fc092d3 df899db 3d73dee fe2f37b 80ab8fe 6ba8329 6510c54 a54a5d2 e64a5c2 09e268e 21ee0e4 83a1127 738039e fbe6573 726d708 11a15f4 26f67a4 5957100 4f05762 7b650b8 30e3713 2c6750d 7b650b8 6cb6628 dc6b708 2473dde dc6b708 8784af6 752107c 8784af6 e29aa1d 8784af6 80ab8fe 8784af6 2966e63 8784af6 08112a4 8451261 08112a4 e7e1f57 08112a4 e7e1f57 08112a4 e7e1f57 08112a4 752107c 08112a4 8784af6 e234712 08112a4 8451261 752107c 8784af6 e234712 8784af6 80ab8fe 8784af6 08112a4 752107c 8451261 752107c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
import streamlit as st
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModel
import torch
first = """informal english: corn fields are all across illinois, visible once you leave chicago.\nTranslated into the Style of Abraham Lincoln: corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), manifesting themselves visibly as one ventures beyond chicago.\n\ninformal english: """
@st.cache(allow_output_mutation=True)
def get_model():
#model = AutoModelForCausalLM.from_pretrained("BigSalmon/GPTNeo350MInformalToFormalLincoln2")
#model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln21")
#model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln40")
#model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln41")
#model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln41")
#model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln49")
#model = AutoModelForCausalLM.from_pretrained("BigSalmon/GPT2InformalToFormalLincoln42")
#model = AutoModelForCausalLM.from_pretrained("BigSalmon/Points3")
#model = AutoModelForCausalLM.from_pretrained("BigSalmon/GPTNeo1.3BPointsLincolnFormalInformal")
#model = AutoModelForCausalLM.from_pretrained("BigSalmon/MediumInformalToFormalLincoln")
#model = AutoModelForCausalLM.from_pretrained("BigSalmon/GPTNeo350MInformalToFormalLincoln7")
#model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincolnConciseWordy")
#model = AutoModelForCausalLM.from_pretrained("BigSalmon/MediumInformalToFormalLincoln2")
#model = AutoModelForCausalLM.from_pretrained("BigSalmon/MediumInformalToFormalLincoln3")
#model = AutoModelForCausalLM.from_pretrained("BigSalmon/MediumInformalToFormalLincoln4")
#model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln50")
#model = AutoModelForCausalLM.from_pretrained("BigSalmon/GPT2Neo1.3BPoints2")
#model = AutoModelForCausalLM.from_pretrained("BigSalmon/GPT2Neo1.3BPoints3")
#model = AutoModelForCausalLM.from_pretrained("facebook/opt-125m")
#tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln63Paraphrase")
#model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln68Paraphrase")
#model2 = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln63Paraphrase")
#model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln63Paraphrase")
#tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln73Paraphrase")
#model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln73Paraphrase")
#tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln76Paraphrase")
#model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln76Paraphrase")
#model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln78Paraphrase")
#tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln78Paraphrase")
#model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln80Paraphrase")
#tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln80Paraphrase")
#model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln82Paraphrase")
#tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln82Paraphrase")
#model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln83Paraphrase")
#tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln83Paraphrase")
model = AutoModelForCausalLM.from_pretrained("cerebras/Cerebras-GPT-1.3B")
#model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln87Paraphrase")
tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln87Paraphrase")
tokenizer2 = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincolnMedium")
model2 = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincolnMedium")
return model, model2, tokenizer, tokenizer2
model, model2, tokenizer, tokenizer2 = get_model()
st.text('''For Prompt Templates: https://huggingface.co/BigSalmon/InformalToFormalLincoln82Paraphrase''')
temp = st.sidebar.slider("Temperature", 0.7, 1.5)
number_of_outputs = st.sidebar.slider("Number of Outputs", 5, 50)
lengths = st.sidebar.slider("Length", 3, 500)
bad_words = st.text_input("Words You Do Not Want Generated", " core lemon height time ")
logs_outputs = st.sidebar.slider("Logit Outputs", 50, 300)
def run_generate(text, bad_words):
yo = []
input_ids = tokenizer.encode(text, return_tensors='pt')
res = len(tokenizer.encode(text))
bad_words = bad_words.split()
bad_word_ids = []
for bad_word in bad_words:
bad_word = " " + bad_word
ids = tokenizer(bad_word).input_ids
bad_word_ids.append(ids)
sample_outputs = model.generate(
input_ids,
do_sample=True,
max_length= res + lengths,
min_length = res + lengths,
top_k=50,
temperature=temp,
num_return_sequences=number_of_outputs,
bad_words_ids=bad_word_ids
)
for i in range(number_of_outputs):
e = tokenizer.decode(sample_outputs[i])
e = e.replace(text, "")
yo.append(e)
return yo
def BestProbs5(prompt):
prompt = prompt.strip()
text = tokenizer.encode(prompt)
myinput, past_key_values = torch.tensor([text]), None
myinput = myinput
logits, past_key_values = model(myinput, past_key_values = past_key_values, return_dict=False)
logits = logits[0,-1]
probabilities = torch.nn.functional.softmax(logits)
best_logits, best_indices = logits.topk(number_of_outputs)
best_words = [tokenizer.decode([idx.item()]) for idx in best_indices]
for i in best_words[0:number_of_outputs]:
#print(i)
print("\n")
g = (prompt + i)
st.write(g)
l = run_generate(g, "hey")
st.write(l)
def run_generate2(text, bad_words):
yo = []
input_ids = tokenizer2.encode(text, return_tensors='pt')
res = len(tokenizer2.encode(text))
bad_words = bad_words.split()
bad_word_ids = []
for bad_word in bad_words:
bad_word = " " + bad_word
ids = tokenizer2(bad_word).input_ids
bad_word_ids.append(ids)
sample_outputs = model2.generate(
input_ids,
do_sample=True,
max_length= res + lengths,
min_length = res + lengths,
top_k=50,
temperature=temp,
num_return_sequences=number_of_outputs,
bad_words_ids=bad_word_ids
)
for i in range(number_of_outputs):
e = tokenizer2.decode(sample_outputs[i])
e = e.replace(text, "")
yo.append(e)
return yo
def prefix_format(sentence):
words = sentence.split()
if "[MASK]" in sentence:
words2 = words.index("[MASK]")
#print(words2)
output = ("<Prefix> " + ' '.join(words[:words2]) + " <Prefix> " + "<Suffix> " + ' '.join(words[words2+1:]) + " <Suffix>" + " <Middle>")
st.write(output)
else:
st.write("Add [MASK] to sentence")
with st.form(key='my_form'):
text = st.text_area(label='Enter sentence', value=first)
submit_button = st.form_submit_button(label='Submit')
submit_button2 = st.form_submit_button(label='Submit Log Probs')
submit_button3 = st.form_submit_button(label='Submit Other Model')
submit_button4 = st.form_submit_button(label='Submit Log Probs Other Model')
submit_button5 = st.form_submit_button(label='Most Prob')
submit_button6 = st.form_submit_button(label='Turn Sentence with [MASK] into <Prefix> Format')
if submit_button:
translated_text = run_generate(text, bad_words)
st.write(translated_text if translated_text else "No translation found")
if submit_button2:
with torch.no_grad():
text2 = str(text)
print(text2)
text3 = tokenizer.encode(text2)
myinput, past_key_values = torch.tensor([text3]), None
myinput = myinput
logits, past_key_values = model(myinput, past_key_values = past_key_values, return_dict=False)
logits = logits[0,-1]
probabilities = torch.nn.functional.softmax(logits)
best_logits, best_indices = logits.topk(logs_outputs)
best_words = [tokenizer.decode([idx.item()]) for idx in best_indices]
st.write(best_words)
if submit_button3:
translated_text = run_generate2(text, bad_words)
st.write(translated_text if translated_text else "No translation found")
if submit_button4:
text2 = str(text)
print(text2)
text3 = tokenizer2.encode(text2)
myinput, past_key_values = torch.tensor([text3]), None
myinput = myinput
logits, past_key_values = model2(myinput, past_key_values = past_key_values, return_dict=False)
logits = logits[0,-1]
probabilities = torch.nn.functional.softmax(logits)
best_logits, best_indices = logits.topk(logs_outputs)
best_words = [tokenizer2.decode([idx.item()]) for idx in best_indices]
st.write(best_words)
if submit_button5:
BestProbs5(text)
if submit_button6:
text2 = str(text)
prefix_format(text2) |