Bils's picture
Update app.py
24da5c3 verified
raw
history blame
6.33 kB
import os
import tempfile
import gradio as gr
from dotenv import load_dotenv
import torch
from scipy.io.wavfile import write
from diffusers import DiffusionPipeline
from transformers import pipeline
from pathlib import Path
# Load environment variables from .env file if needed
load_dotenv()
# If you have any Hugging Face tokens for private models (AudioLDM2 requires HF_TKN)
hf_token = os.getenv("HF_TKN")
# ------------------------------------------------
# 1) INITIALIZE FREE IMAGE CAPTIONING PIPELINE
# ------------------------------------------------
# Replace "nlpconnect/vit-gpt2-image-captioning" with any other free image captioning model you prefer.
captioning_pipeline = pipeline(
"image-to-text",
model="nlpconnect/vit-gpt2-image-captioning",
# If the model is private or requires auth, pass the token here: use_auth_token=hf_token,
)
# ------------------------------------------------
# 2) INITIALIZE AUDIO LDM-2 PIPELINE
# ------------------------------------------------
# AudioLDM2 is also from Hugging Face. If it’s a private model, pass your token via use_auth_token.
# If you’re using the public version, you may not need the token at all.
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = DiffusionPipeline.from_pretrained(
"cvssp/audioldm2",
use_auth_token=hf_token # remove or comment out if not needed
)
pipe = pipe.to(device)
def analyze_image_with_free_model(image_file):
"""
Analyzes an uploaded image using a free Hugging Face model for image captioning.
Returns: (caption_text, is_error_flag)
"""
try:
# Save uploaded image to a temporary file
with tempfile.NamedTemporaryFile(suffix=".jpg", delete=False) as temp_file:
temp_file.write(image_file)
temp_image_path = temp_file.name
# Run the image captioning pipeline
results = captioning_pipeline(temp_image_path)
if not results or not isinstance(results, list):
return "Error: Could not generate caption.", True
# Typically, pipeline returns a list of dicts with a "generated_text" key
caption = results[0].get("generated_text", "").strip()
if not caption:
return "No caption was generated.", True
return caption, False
except Exception as e:
print(f"Error analyzing image: {e}")
return f"Error analyzing image: {e}", True
def get_audioldm_from_caption(caption):
"""
Generates sound from a caption using the AudioLDM-2 model.
Returns the filename (path) of the generated .wav file.
"""
try:
# Generate audio from the caption
audio_output = pipe(
prompt=caption,
num_inference_steps=50,
guidance_scale=7.5
)
audio = audio_output.audios[0]
# Write the audio to a temporary .wav file
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_wav:
write(temp_wav.name, 16000, audio)
return temp_wav.name
except Exception as e:
print(f"Error generating audio from caption: {e}")
return None
# ------------------------------------------------
# 3) GRADIO INTERFACE
# ------------------------------------------------
css = """
#col-container{
margin: 0 auto;
max-width: 800px;
}
"""
with gr.Blocks(css=css) as demo:
# Main Title and App Description
with gr.Column(elem_id="col-container"):
gr.HTML("""
<h1 style="text-align: center;">
🎶 Generate Sound Effects from Image
</h1>
<p style="text-align: center;">
⚡ Powered by <a href="https://bilsimaging.com" target="_blank">Bilsimaging</a>
</p>
""")
gr.Markdown("""
Welcome to this unique sound effect generator! This tool allows you to upload an image and generate a
descriptive caption and a corresponding sound effect, all using free, open-source models on Hugging Face.
**💡 How it works:**
1. **Upload an image**: Choose an image that you'd like to analyze.
2. **Generate Description**: Click on 'Generate Description' to get a textual description of your uploaded image.
3. **Generate Sound Effect**: Based on the image description, click on 'Generate Sound Effect' to create a
sound effect that matches the image context.
Enjoy the journey from visual to auditory sensation with just a few clicks!
""")
image_upload = gr.File(label="Upload Image", type="binary")
generate_description_button = gr.Button("Generate Description")
caption_display = gr.Textbox(label="Image Description", interactive=False) # Keep read-only
generate_sound_button = gr.Button("Generate Sound Effect")
audio_output = gr.Audio(label="Generated Sound Effect")
# Extra footer
gr.Markdown("""
## 👥 How You Can Contribute
We welcome contributions and suggestions for improvements. Your feedback is invaluable
to the continuous enhancement of this application.
For support, questions, or to contribute, please contact us at
[[email protected]](mailto:[email protected]).
Support our work and get involved by donating through
[Ko-fi](https://ko-fi.com/bilsimaging). - Bilel Aroua
""")
gr.Markdown("""
## 📢 Stay Connected
This app is a testament to the creative possibilities that emerge when technology meets art.
Enjoy exploring the auditory landscape of your images!
""")
# Function to update the caption display based on the uploaded image
def update_caption(image_file):
description, error_flag = analyze_image_with_free_model(image_file)
return description
# Function to generate sound from the description
def generate_sound(description):
if not description or description.startswith("Error"):
return None # or some default sound
audio_path = get_audioldm_from_caption(description)
return audio_path
generate_description_button.click(
fn=update_caption,
inputs=image_upload,
outputs=caption_display
)
generate_sound_button.click(
fn=generate_sound,
inputs=caption_display,
outputs=audio_output
)
demo.launch(debug=True, share=True)