File size: 22,515 Bytes
fe1526d
 
 
 
 
 
 
 
eef7615
fe1526d
 
891293a
 
eef7615
 
fe1526d
568b30d
fe1526d
 
 
d55b8b8
233a41d
19628eb
 
 
eef7615
 
6c41a5e
 
 
 
 
 
11c3099
 
6c41a5e
 
568b30d
fe1526d
 
478194b
 
 
 
 
 
 
 
 
 
233a41d
fe1526d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
233a41d
 
fe1526d
 
233a41d
fe1526d
 
233a41d
7ee9dd1
fe1526d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eef7615
 
 
 
 
 
 
fe1526d
 
 
 
 
 
 
 
7ee9dd1
 
 
fe1526d
 
 
478194b
fe1526d
 
 
32944e5
eef7615
c933e41
eef7615
 
 
32944e5
eef7615
6c41a5e
 
32944e5
 
11c3099
 
32944e5
 
 
 
11c3099
 
 
32944e5
eef7615
32944e5
 
eef7615
32944e5
c933e41
11c3099
eef7615
 
11c3099
 
 
 
 
 
 
 
eef7615
 
 
 
 
891293a
596804b
 
 
11c3099
891293a
eef7615
 
 
 
 
 
596804b
891293a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
596804b
 
 
 
 
 
11c3099
596804b
11c3099
 
 
 
 
891293a
 
 
 
 
 
 
 
 
 
 
 
596804b
fe1526d
c933e41
7f1213b
eef7615
 
 
 
 
 
6c41a5e
c933e41
 
 
 
 
 
fe1526d
 
 
d55b8b8
 
 
 
 
 
 
 
 
 
 
 
 
 
478194b
fe1526d
478194b
 
 
233a41d
7ee9dd1
 
 
6c41a5e
891293a
32944e5
 
3607afa
478194b
 
 
 
891293a
 
 
 
 
 
 
 
 
 
 
 
 
 
6c41a5e
eef7615
 
 
891293a
eef7615
 
 
 
 
891293a
eef7615
891293a
eef7615
891293a
 
eef7615
891293a
 
 
 
 
 
 
 
 
 
 
 
 
eef7615
891293a
32944e5
 
 
 
 
 
 
891293a
32944e5
c933e41
32944e5
891293a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
478194b
 
fe1526d
478194b
891293a
 
eef7615
891293a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ee9dd1
478194b
 
891293a
7ee9dd1
 
 
 
 
 
 
 
478194b
d55b8b8
 
891293a
 
 
 
 
 
 
 
 
 
478194b
 
 
d55b8b8
7ee9dd1
 
 
 
 
 
 
 
 
 
891293a
478194b
 
 
 
 
 
 
 
 
7ee9dd1
478194b
7ee9dd1
478194b
7ee9dd1
 
 
 
32944e5
478194b
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
# Import required libraries
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.document_loaders import (
    UnstructuredWordDocumentLoader,
    PyMuPDFLoader,
    UnstructuredFileLoader,
)
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from langchain.chat_models import ChatOpenAI
from langchain.vectorstores import Pinecone, Chroma
from langchain.chains import ConversationalRetrievalChain, LLMChain
from langchain.chains.question_answering import load_qa_chain
from langchain.prompts import PromptTemplate
from langchain.memory import ConversationBufferMemory
import os
import langchain
import pinecone
import streamlit as st
import shutil
import json

OPENAI_API_KEY = ''
PINECONE_API_KEY = ''
PINECONE_API_ENV = ''
gpt3p5 = 'gpt-3.5-turbo-1106'
gpt4 = 'gpt-4-1106-preview'
local_model_tuples = [
        (0, 'mistral_7b', "TheBloke/OpenHermes-2-Mistral-7B-GGUF", "openhermes-2-mistral-7b.Q8_0.gguf", "mistral", "https://huggingface.co/TheBloke/OpenHermes-2-Mistral-7B-GGUF"),
        (1, 'mistral_7b_inst_small', "TheBloke/Mistral-7B-Instruct-v0.1-GGUF", "mistral-7b-instruct-v0.1.Q2_K.gguf", "mistral", "https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GGUF"),
        (2, 'mistral_7b_inst_med', "TheBloke/Mistral-7B-Instruct-v0.1-GGUF", "mistral-7b-instruct-v0.1.Q8_0.gguf", "mistral", "https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GGUF"),
        (3, 'llama_13b_small', "TheBloke/Llama-2-13B-chat-GGUF", "llama-2-13b-chat.Q4_K_M.gguf", "llama", "https://huggingface.co/TheBloke/Llama-2-13B-chat-GGUF"),
        (4, 'llama_13b_med', "TheBloke/Llama-2-13B-chat-GGUF", "llama-2-13b-chat.Q8_0.gguf", "llama", "https://huggingface.co/TheBloke/Llama-2-13B-chat-GGUF"),
        (5, 'mixtral', "TheBloke/Mixtral-8x7B-v0.1-GGUF", "mixtral-8x7b-v0.1.Q8_0.gguf", "mixtral", "https://huggingface.co/TheBloke/Mixtral-8x7B-v0.1-GGUF"),
        (6, 'mixtral_inst', "TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF", "mixtral-8x7b-instruct-v0.1.Q2_K.gguf", "mixtral", "https://huggingface.co/TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF"),
    ]
local_model_names = [t[1] for t in local_model_tuples]
langchain.verbose = False


@st.cache_data()
def init():
    pinecone_index_name = ''
    chroma_collection_name = ''
    persist_directory = ''
    docsearch_ready = False
    directory_name = 'tmp_docs'
    return pinecone_index_name, chroma_collection_name, persist_directory, docsearch_ready, directory_name


@st.cache_data()
def save_file(files):
    # Remove existing files in the directory
    if os.path.exists(directory_name):
        for filename in os.listdir(directory_name):
            file_path = os.path.join(directory_name, filename)
            try:
                if os.path.isfile(file_path):
                    os.remove(file_path)
            except Exception as e:
                print(f"Error: {e}")
    # Save the new file with original filename
    if files is not None:
        for file in files:
            file_name = file.name
            file_path = os.path.join(directory_name, file_name)
            with open(file_path, 'wb') as f:
                shutil.copyfileobj(file, f)


def load_files():
    all_texts = []
    n_files = 0
    n_char = 0
    n_texts = 0

    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=400, chunk_overlap=50
    )
    for filename in os.listdir(directory_name):
        file = os.path.join(directory_name, filename)
        if os.path.isfile(file):
            if file.endswith(".docx"):
                loader = UnstructuredWordDocumentLoader(file)
            elif file.endswith(".pdf"):
                loader = PyMuPDFLoader(file)
            else:   # assume a pure text format and attempt to load it
                loader = UnstructuredFileLoader(file)
            data = loader.load()
            texts = text_splitter.split_documents(data)
            n_files += 1
            n_char += len(data[0].page_content)
            n_texts += len(texts)
            all_texts.extend(texts)
    st.write(
        f"Loaded {n_files} file(s) with {n_char} characters, and split into {n_texts} split-documents."
    )
    return all_texts, n_texts


@st.cache_resource()
def ingest(_all_texts, use_pinecone, _embeddings, pinecone_index_name, chroma_collection_name, persist_directory):
    if use_pinecone:
        docsearch = Pinecone.from_texts(
            [t.page_content for t in _all_texts], _embeddings, index_name=pinecone_index_name)  # add namespace=pinecone_namespace if provided
    else:
        docsearch = Chroma.from_documents(
            _all_texts, _embeddings, collection_name=chroma_collection_name, persist_directory=persist_directory)

    return docsearch


def setup_retriever(docsearch, k):
    retriever = docsearch.as_retriever(
        search_type="similarity", search_kwargs={"k": k}, include_metadata=True)
    return retriever


def setup_docsearch(use_pinecone, pinecone_index_name, embeddings, chroma_collection_name, persist_directory):
    docsearch = []
    n_texts = 0
    if use_pinecone:
        # Load the pre-created Pinecone index.
        # The index which has already be stored in pinecone.io as long-term memory
        if pinecone_index_name in pinecone.list_indexes():
            docsearch = Pinecone.from_existing_index(
                pinecone_index_name, embeddings)  # add namespace=pinecone_namespace if provided
            index_client = pinecone.Index(pinecone_index_name)
            # Get the index information
            index_info = index_client.describe_index_stats()
            # namespace_name = ''
            # if index_info is not None:
            #     print(index_info['namespaces'][namespace_name]['vector_count'])
            # else:
            #     print("Index information is not available.")            
            # n_texts = index_info['namespaces'][namespace_name]['vector_count']
            n_texts = index_info['total_vector_count']
        else:
            raise ValueError('''Cannot find the specified Pinecone index.
            				Create one in pinecone.io or using, e.g.,
            				pinecone.create_index(
            					name=index_name, dimension=1536, metric="cosine", shards=1)''')
    else:
        docsearch = Chroma(persist_directory=persist_directory, embedding_function=embeddings,
                           collection_name=chroma_collection_name)

        n_texts = docsearch._collection.count()

    return docsearch, n_texts


def get_response(query, chat_history, CRqa):
    result = CRqa({"question": query, "chat_history": chat_history})
    return result['answer'], result['source_documents']


@st.cache_resource()
def use_local_llm(r_llm, local_llm_path, temperature):
    from langchain.llms import LlamaCpp
    from langchain.callbacks.manager import CallbackManager
    from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
    from huggingface_hub import hf_hub_download
    callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
    entry = local_model_names.index(r_llm)
    model_id, local_model_name, model_name, model_file, model_type, model_link = local_model_tuples[entry]
    model_path = os.path.join( local_llm_path, model_name, model_file )
    model_path = os.path.normpath( model_path )
    model_dir = os.path.join( local_llm_path, model_name )
    model_dir = os.path.normpath( model_dir )
    if not os.path.exists(model_path):
        print("model not existing at ", model_path, "\n")
        model_path = hf_hub_download(repo_id=model_name, filename=model_file, repo_type="model",
                #cache_dir=local_llm_path, 
                #local_dir=local_llm_path, 
                local_dir=model_dir,
                local_dir_use_symlinks=False)
        print("\n model downloaded at path=",model_path)
    else:
        print("model existing at ", model_path)
    
    llm = LlamaCpp( 
        model_path=model_path,
        temperature=temperature,
        # n_batch=300,
        n_ctx=4000,
        max_tokens=2000,
        # n_gpu_layers=10,
        # n_threads=12,
        # top_p=1,
        # repeat_penalty=1.15,
        # verbose=False,
        # callback_manager=callback_manager, 
        # streaming=True,
        # chat_format="llama-2",
        # verbose=True, # Verbose is required to pass to the callback manager
    )
    return llm


def setup_prompt(r_llm, usage):
    B_INST, E_INST = "[INST]", "[/INST]"
    B_SYS_LLAMA, E_SYS_LLAMA = "<<SYS>>\n", "\n<</SYS>>\n\n"
    B_SYS_MIS, E_SYS_MIS = "<s> ", "</s> "
    B_SYS_MIXTRAL, E_SYS_MIXTRAL = "<s>[INST]", "[/INST]</s>[INST]"
    system_prompt_rag = """Answer the question in your own words as truthfully as possible from the context given to you.
        Supply sufficient information, evidence, reasoning, source from the context, etc., to justify your answer with details and logic.
        Think step by step and do not jump to conclusion during your reasoning at the beginning.
        Sometimes user's question may appear to be directly related to the context but may still be indirectly related, 
            so try your best to understand the question based on the context and chat history.
        If questions are asked where there is no relevant context available, 
            respond using out-of-context knowledge with 
            "This question does not seem to be relevant to the documents. I am trying to explore knowledge outside the context." """
    system_prompt_chat = """Answer the question in your own words.
        Supply sufficient information, evidence, reasoning, source from the context, etc., to justify your answer with details and logic.
        Think step by step and do not jump to conclusion during your reasoning at the beginning.
        """
    system_prompt_task = """You will be given a task, and you are an expert in that task. 
        Perform the task for the given context, and output the result. Do not include extra descriptions. Just output the desired result defined by the task.
        Example: You are a professional translator and are given a translation task. Then you translate the text in the context and output only the translated text.
        Example: You are a professional proofreader and are given a proofreading task. Then you proofread the text in the context and output only the translated text.
        """    
    if usage == 'RAG':
        system_prompt = system_prompt_rag
        instruction = """
            Context: {context}

            Chat history: {chat_history}
            User: {question}
            Bot: answer """
    elif usage == 'Chat':
        system_prompt = system_prompt_chat
        instruction = """
            Chat history: {chat_history}
            User: {question}
            Bot: answer """
    elif usage == 'Task':
        system_prompt = system_prompt_task
        instruction = """
            Context: {context}
            User: {question}
            Bot: answer """        
    if r_llm == gpt3p5 or r_llm == gpt4:
        template = system_prompt + instruction
    else:
        entry = local_model_names.index(r_llm)
        if local_model_tuples[entry][4] == 'llama':
            template = B_INST + B_SYS_LLAMA + system_prompt + E_SYS_LLAMA + instruction + E_INST
        elif local_model_tuples[entry][4] == 'mistral':
            template = B_SYS_MIS + B_INST + system_prompt + E_INST + E_SYS_MIS + B_INST + instruction + E_INST
        elif local_model_tuples[entry][4] == 'mixtral':
            template = B_SYS_MIXTRAL + system_prompt + E_SYS_MIXTRAL + B_INST + instruction + E_INST
        else:
            # Handle other models or raise an exception
            pass
    if usage == 'RAG':
        prompt = PromptTemplate(
            input_variables=["context", "chat_history", "question"], template=template
        )
    elif usage == 'Chat':
        prompt = PromptTemplate(
            input_variables=["chat_history", "question"], template=template
        )
    elif usage == 'Task':
        prompt = PromptTemplate(
            input_variables=["context", "question"], template=template
        )
    return prompt

def setup_em_llm(OPENAI_API_KEY, temperature, r_llm, local_llm_path, usage):
    if (r_llm == gpt3p5 or r_llm == gpt4) and OPENAI_API_KEY:
        # Set up OpenAI embeddings
        embeddings = OpenAIEmbeddings(openai_api_key=OPENAI_API_KEY)
        # Use Open AI LLM with gpt-3.5-turbo or gpt-4.
        # Set the temperature to be 0 if you do not want it to make up things
        llm = ChatOpenAI(temperature=temperature, model_name=r_llm, streaming=True,
                        openai_api_key=OPENAI_API_KEY)    
    else:     
        if usage == 'RAG':
            em_model_name='sentence-transformers/all-mpnet-base-v2'
            embeddings = HuggingFaceEmbeddings(model_name=em_model_name)
        else:
            embeddings = []
        llm = use_local_llm(r_llm, local_llm_path, temperature)
    return embeddings, llm


def load_chat_history(CHAT_HISTORY_FILENAME):
    try:
        with open(CHAT_HISTORY_FILENAME, 'r') as f:
            chat_history = json.load(f)
    except (FileNotFoundError, json.JSONDecodeError):
        chat_history = []
    return chat_history


def save_chat_history(chat_history, CHAT_HISTORY_FILENAME):
    with open(CHAT_HISTORY_FILENAME, 'w') as f:
        json.dump(chat_history, f)


pinecone_index_name, chroma_collection_name, persist_directory, docsearch_ready, directory_name = init()


def main(pinecone_index_name, chroma_collection_name, persist_directory, docsearch_ready, directory_name):
    docsearch_ready = False
    chat_history = []
    latest_chats = []
    reply = ''
    source = ''
    LLMs = [gpt3p5, gpt4] + local_model_names
    usage = 'RAG'
    local_llm_path = './models/'
    user_llm_path = ''
    hist_fn = ''
    # Get user input of whether to use Pinecone or not
    col1, col2, col3 = st.columns([1, 1, 1])
    # create the radio buttons and text input fields
    with col1:
        usage = st.radio('Usage: RAG for ingested files, chat (no files), or task (for all ingested texts)', ('RAG', 'Chat', 'Task'))
        temperature = st.slider('Temperature', 0.0, 1.0, 0.1)
        if usage == 'RAG':
            r_pinecone = st.radio('Vector store:', ('Pinecone (online)', 'Chroma (local)'))
            k_sources = st.slider('# source(s) to print out', 0, 20, 2)
            r_ingest = st.radio('Ingest file(s)?', ('Yes', 'No'))
            if r_pinecone == 'Pinecone (online)':
                use_pinecone = True
            else:
                use_pinecone = False                
        if usage == 'Task':
            r_ingest = 'Yes'
       
    with col2:
        r_llm = st.radio(label='LLM:', options=LLMs)
        if r_llm == gpt3p5 or r_llm == gpt4:
            use_openai = True
        else:
            use_openai = False             
        if use_openai == True:
            OPENAI_API_KEY = st.text_input(
                "OpenAI API key:", type="password")
        else:
            OPENAI_API_KEY = ''
            if usage == 'RAG' and use_pinecone == True:
                st.write('Local GPT model (and local embedding model) is selected. Online vector store is selected.')
            elif usage == 'RAG' and use_pinecone == False:
                st.write('Local GPT model (and local embedding model) and local vector store are selected. All info remains local.')
            else:
                st.write('Local GPT model is selected. All info remains local.')
    with col3:
        if usage == 'RAG':
            if use_pinecone == True:
                PINECONE_API_KEY = st.text_input(
                    "Pinecone API key:", type="password")
                PINECONE_API_ENV = st.text_input(
                    "Pinecone API env:", type="password")
                pinecone_index_name = st.text_input('Pinecone index:')
                pinecone.init(api_key=PINECONE_API_KEY,
                                environment=PINECONE_API_ENV)
            else:
                chroma_collection_name = st.text_input(
                    '''Chroma collection name of 3-63 characters:''')
                persist_directory = "./vectorstore"
        else:
            hist_fn = st.text_input('Chat history filename')
        if use_openai == False:
            user_llm_path = st.text_input(
                "Path for local model (TO BE DOWNLOADED IF NOT EXISTING), type 'default' to use default path:",
                placeholder="default")
            if 'default' in user_llm_path:
                user_llm_path = local_llm_path

    if ( (pinecone_index_name or chroma_collection_name or usage == 'Task' or usage == 'Chat') 
        and ( (use_openai and OPENAI_API_KEY) or (not use_openai and user_llm_path) ) ):
        embeddings, llm = setup_em_llm(OPENAI_API_KEY, temperature, r_llm, user_llm_path, usage)    
    #if ( pinecone_index_name or chroma_collection_name ) and embeddings and llm:
        session_name = pinecone_index_name + chroma_collection_name + hist_fn
        if usage != 'Chat':
            if r_ingest.lower() == 'yes':
                files = st.file_uploader(
                    'Upload Files', accept_multiple_files=True)
                if files:
                    save_file(files)
                    all_texts, n_texts = load_files()
                    if usage == 'RAG':
                        docsearch = ingest(all_texts, use_pinecone, embeddings, pinecone_index_name,
                                    chroma_collection_name, persist_directory)
                    docsearch_ready = True
            else:
                st.write(
                    'No data is to be ingested. Make sure the Pinecone index or Chroma collection name you provided contains data.')
                docsearch, n_texts = setup_docsearch(use_pinecone, pinecone_index_name,
                                                    embeddings, chroma_collection_name, persist_directory)
                docsearch_ready = True
        else:
            docsearch_ready = True
    if docsearch_ready:
        prompt = setup_prompt(r_llm, usage)      
        #if usage == 'RAG' or usage == 'Chat':
        memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True, output_key='answer')
        if usage == 'RAG':
            # number of sources (split-documents when ingesting files); default is 4
            k = min([20, n_texts])
            retriever = setup_retriever(docsearch, k)
            CRqa = ConversationalRetrievalChain.from_llm(
                    llm, 
                    chain_type="stuff",
                    retriever=retriever, 
                    memory=memory,
                    return_source_documents=True,
                    combine_docs_chain_kwargs={'prompt': prompt},
                    )
        elif usage == 'Chat':   
            CRqa = LLMChain(
                    llm=llm, 
                    prompt=prompt,                        
                    )
        elif usage == 'Task':                
            CRqa = load_qa_chain(
                    llm=llm, 
                    chain_type="stuff",
                    prompt=prompt
                    )
        st.title(':blue[Chatbot]')
        # Get user input
        query = st.text_area('Enter your question:', height=10,
                             placeholder='''Summarize the context.
                                            \nAfter typing your question, click on SUBMIT to send it to the bot.''')       
        submitted = st.button('SUBMIT')

        CHAT_HISTORY_FILENAME = f"chat_history/{session_name}_chat_hist.json"
        chat_history = load_chat_history(CHAT_HISTORY_FILENAME)
        st.markdown('<style>.my_title { font-weight: bold; color: red; }</style>', unsafe_allow_html=True)

        if query and submitted:
            # Generate a reply based on the user input and chat history
            chat_history = [(user, bot)
                            for user, bot in chat_history]
            if usage == 'RAG':
                reply, source = get_response(query, chat_history, CRqa)
            elif usage == 'Chat':
                reply = CRqa({"question": query, "chat_history": chat_history, "return_only_outputs": True})
                reply = reply['text']
            elif usage == 'Task':
                reply = []
                for a_text in all_texts:
                    output_text = CRqa.run(input_documents=[a_text], question=query )                    
                    reply.append ( output_text )
            # Update the chat history with the user input and system response
            chat_history.append(('User', query))
            chat_history.append(('Bot', reply))
            save_chat_history(chat_history, CHAT_HISTORY_FILENAME)
            c = chat_history[-4:]
            if len(chat_history) >= 4:
                latest_chats = [c[2],c[3],c[0],c[1]]
            else:
                latest_chats = c

        if latest_chats:   
            chat_history_str1 = '<br>'.join([f'<span class=\"my_title\">{x[0]}:</span> {x[1]}' for x in latest_chats])        
            st.markdown(f'<div class=\"chat-record\">{chat_history_str1}</div>', unsafe_allow_html=True)

        if usage == 'RAG' and reply and source:
            # Display sources
            for i, source_i in enumerate(source):
                if i < k_sources:
                    if len(source_i.page_content) > 400:
                        page_content = source_i.page_content[:400]
                    else:
                        page_content = source_i.page_content
                    if source_i.metadata:
                        metadata_source = source_i.metadata['source']
                        st.markdown(f"<h3 class='my_title'>Source {i+1}: {metadata_source}</h3> <br> {page_content}", unsafe_allow_html=True)
                    else:
                        st.markdown(f"<h3 class='my_title'>Source {i+1}: </h3> <br> {page_content}", unsafe_allow_html=True)

        all_chats = chat_history
        all_chat_history_str = '\n'.join(
                [f'{x[0]}: {x[1]}' for x in all_chats])
        st.title(':blue[All chat records]')
        st.text_area('Chat records in ascending order:', value=all_chat_history_str, height=250, label_visibility='collapsed')      
if __name__ == '__main__':
    main(pinecone_index_name, chroma_collection_name, persist_directory,
         docsearch_ready, directory_name)