Spaces:
Sleeping
Sleeping
File size: 22,515 Bytes
fe1526d eef7615 fe1526d 891293a eef7615 fe1526d 568b30d fe1526d d55b8b8 233a41d 19628eb eef7615 6c41a5e 11c3099 6c41a5e 568b30d fe1526d 478194b 233a41d fe1526d 233a41d fe1526d 233a41d fe1526d 233a41d 7ee9dd1 fe1526d eef7615 fe1526d 7ee9dd1 fe1526d 478194b fe1526d 32944e5 eef7615 c933e41 eef7615 32944e5 eef7615 6c41a5e 32944e5 11c3099 32944e5 11c3099 32944e5 eef7615 32944e5 eef7615 32944e5 c933e41 11c3099 eef7615 11c3099 eef7615 891293a 596804b 11c3099 891293a eef7615 596804b 891293a 596804b 11c3099 596804b 11c3099 891293a 596804b fe1526d c933e41 7f1213b eef7615 6c41a5e c933e41 fe1526d d55b8b8 478194b fe1526d 478194b 233a41d 7ee9dd1 6c41a5e 891293a 32944e5 3607afa 478194b 891293a 6c41a5e eef7615 891293a eef7615 891293a eef7615 891293a eef7615 891293a eef7615 891293a eef7615 891293a 32944e5 891293a 32944e5 c933e41 32944e5 891293a 478194b fe1526d 478194b 891293a eef7615 891293a 7ee9dd1 478194b 891293a 7ee9dd1 478194b d55b8b8 891293a 478194b d55b8b8 7ee9dd1 891293a 478194b 7ee9dd1 478194b 7ee9dd1 478194b 7ee9dd1 32944e5 478194b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 |
# Import required libraries
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.document_loaders import (
UnstructuredWordDocumentLoader,
PyMuPDFLoader,
UnstructuredFileLoader,
)
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from langchain.chat_models import ChatOpenAI
from langchain.vectorstores import Pinecone, Chroma
from langchain.chains import ConversationalRetrievalChain, LLMChain
from langchain.chains.question_answering import load_qa_chain
from langchain.prompts import PromptTemplate
from langchain.memory import ConversationBufferMemory
import os
import langchain
import pinecone
import streamlit as st
import shutil
import json
OPENAI_API_KEY = ''
PINECONE_API_KEY = ''
PINECONE_API_ENV = ''
gpt3p5 = 'gpt-3.5-turbo-1106'
gpt4 = 'gpt-4-1106-preview'
local_model_tuples = [
(0, 'mistral_7b', "TheBloke/OpenHermes-2-Mistral-7B-GGUF", "openhermes-2-mistral-7b.Q8_0.gguf", "mistral", "https://huggingface.co/TheBloke/OpenHermes-2-Mistral-7B-GGUF"),
(1, 'mistral_7b_inst_small', "TheBloke/Mistral-7B-Instruct-v0.1-GGUF", "mistral-7b-instruct-v0.1.Q2_K.gguf", "mistral", "https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GGUF"),
(2, 'mistral_7b_inst_med', "TheBloke/Mistral-7B-Instruct-v0.1-GGUF", "mistral-7b-instruct-v0.1.Q8_0.gguf", "mistral", "https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GGUF"),
(3, 'llama_13b_small', "TheBloke/Llama-2-13B-chat-GGUF", "llama-2-13b-chat.Q4_K_M.gguf", "llama", "https://huggingface.co/TheBloke/Llama-2-13B-chat-GGUF"),
(4, 'llama_13b_med', "TheBloke/Llama-2-13B-chat-GGUF", "llama-2-13b-chat.Q8_0.gguf", "llama", "https://huggingface.co/TheBloke/Llama-2-13B-chat-GGUF"),
(5, 'mixtral', "TheBloke/Mixtral-8x7B-v0.1-GGUF", "mixtral-8x7b-v0.1.Q8_0.gguf", "mixtral", "https://huggingface.co/TheBloke/Mixtral-8x7B-v0.1-GGUF"),
(6, 'mixtral_inst', "TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF", "mixtral-8x7b-instruct-v0.1.Q2_K.gguf", "mixtral", "https://huggingface.co/TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF"),
]
local_model_names = [t[1] for t in local_model_tuples]
langchain.verbose = False
@st.cache_data()
def init():
pinecone_index_name = ''
chroma_collection_name = ''
persist_directory = ''
docsearch_ready = False
directory_name = 'tmp_docs'
return pinecone_index_name, chroma_collection_name, persist_directory, docsearch_ready, directory_name
@st.cache_data()
def save_file(files):
# Remove existing files in the directory
if os.path.exists(directory_name):
for filename in os.listdir(directory_name):
file_path = os.path.join(directory_name, filename)
try:
if os.path.isfile(file_path):
os.remove(file_path)
except Exception as e:
print(f"Error: {e}")
# Save the new file with original filename
if files is not None:
for file in files:
file_name = file.name
file_path = os.path.join(directory_name, file_name)
with open(file_path, 'wb') as f:
shutil.copyfileobj(file, f)
def load_files():
all_texts = []
n_files = 0
n_char = 0
n_texts = 0
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=400, chunk_overlap=50
)
for filename in os.listdir(directory_name):
file = os.path.join(directory_name, filename)
if os.path.isfile(file):
if file.endswith(".docx"):
loader = UnstructuredWordDocumentLoader(file)
elif file.endswith(".pdf"):
loader = PyMuPDFLoader(file)
else: # assume a pure text format and attempt to load it
loader = UnstructuredFileLoader(file)
data = loader.load()
texts = text_splitter.split_documents(data)
n_files += 1
n_char += len(data[0].page_content)
n_texts += len(texts)
all_texts.extend(texts)
st.write(
f"Loaded {n_files} file(s) with {n_char} characters, and split into {n_texts} split-documents."
)
return all_texts, n_texts
@st.cache_resource()
def ingest(_all_texts, use_pinecone, _embeddings, pinecone_index_name, chroma_collection_name, persist_directory):
if use_pinecone:
docsearch = Pinecone.from_texts(
[t.page_content for t in _all_texts], _embeddings, index_name=pinecone_index_name) # add namespace=pinecone_namespace if provided
else:
docsearch = Chroma.from_documents(
_all_texts, _embeddings, collection_name=chroma_collection_name, persist_directory=persist_directory)
return docsearch
def setup_retriever(docsearch, k):
retriever = docsearch.as_retriever(
search_type="similarity", search_kwargs={"k": k}, include_metadata=True)
return retriever
def setup_docsearch(use_pinecone, pinecone_index_name, embeddings, chroma_collection_name, persist_directory):
docsearch = []
n_texts = 0
if use_pinecone:
# Load the pre-created Pinecone index.
# The index which has already be stored in pinecone.io as long-term memory
if pinecone_index_name in pinecone.list_indexes():
docsearch = Pinecone.from_existing_index(
pinecone_index_name, embeddings) # add namespace=pinecone_namespace if provided
index_client = pinecone.Index(pinecone_index_name)
# Get the index information
index_info = index_client.describe_index_stats()
# namespace_name = ''
# if index_info is not None:
# print(index_info['namespaces'][namespace_name]['vector_count'])
# else:
# print("Index information is not available.")
# n_texts = index_info['namespaces'][namespace_name]['vector_count']
n_texts = index_info['total_vector_count']
else:
raise ValueError('''Cannot find the specified Pinecone index.
Create one in pinecone.io or using, e.g.,
pinecone.create_index(
name=index_name, dimension=1536, metric="cosine", shards=1)''')
else:
docsearch = Chroma(persist_directory=persist_directory, embedding_function=embeddings,
collection_name=chroma_collection_name)
n_texts = docsearch._collection.count()
return docsearch, n_texts
def get_response(query, chat_history, CRqa):
result = CRqa({"question": query, "chat_history": chat_history})
return result['answer'], result['source_documents']
@st.cache_resource()
def use_local_llm(r_llm, local_llm_path, temperature):
from langchain.llms import LlamaCpp
from langchain.callbacks.manager import CallbackManager
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from huggingface_hub import hf_hub_download
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
entry = local_model_names.index(r_llm)
model_id, local_model_name, model_name, model_file, model_type, model_link = local_model_tuples[entry]
model_path = os.path.join( local_llm_path, model_name, model_file )
model_path = os.path.normpath( model_path )
model_dir = os.path.join( local_llm_path, model_name )
model_dir = os.path.normpath( model_dir )
if not os.path.exists(model_path):
print("model not existing at ", model_path, "\n")
model_path = hf_hub_download(repo_id=model_name, filename=model_file, repo_type="model",
#cache_dir=local_llm_path,
#local_dir=local_llm_path,
local_dir=model_dir,
local_dir_use_symlinks=False)
print("\n model downloaded at path=",model_path)
else:
print("model existing at ", model_path)
llm = LlamaCpp(
model_path=model_path,
temperature=temperature,
# n_batch=300,
n_ctx=4000,
max_tokens=2000,
# n_gpu_layers=10,
# n_threads=12,
# top_p=1,
# repeat_penalty=1.15,
# verbose=False,
# callback_manager=callback_manager,
# streaming=True,
# chat_format="llama-2",
# verbose=True, # Verbose is required to pass to the callback manager
)
return llm
def setup_prompt(r_llm, usage):
B_INST, E_INST = "[INST]", "[/INST]"
B_SYS_LLAMA, E_SYS_LLAMA = "<<SYS>>\n", "\n<</SYS>>\n\n"
B_SYS_MIS, E_SYS_MIS = "<s> ", "</s> "
B_SYS_MIXTRAL, E_SYS_MIXTRAL = "<s>[INST]", "[/INST]</s>[INST]"
system_prompt_rag = """Answer the question in your own words as truthfully as possible from the context given to you.
Supply sufficient information, evidence, reasoning, source from the context, etc., to justify your answer with details and logic.
Think step by step and do not jump to conclusion during your reasoning at the beginning.
Sometimes user's question may appear to be directly related to the context but may still be indirectly related,
so try your best to understand the question based on the context and chat history.
If questions are asked where there is no relevant context available,
respond using out-of-context knowledge with
"This question does not seem to be relevant to the documents. I am trying to explore knowledge outside the context." """
system_prompt_chat = """Answer the question in your own words.
Supply sufficient information, evidence, reasoning, source from the context, etc., to justify your answer with details and logic.
Think step by step and do not jump to conclusion during your reasoning at the beginning.
"""
system_prompt_task = """You will be given a task, and you are an expert in that task.
Perform the task for the given context, and output the result. Do not include extra descriptions. Just output the desired result defined by the task.
Example: You are a professional translator and are given a translation task. Then you translate the text in the context and output only the translated text.
Example: You are a professional proofreader and are given a proofreading task. Then you proofread the text in the context and output only the translated text.
"""
if usage == 'RAG':
system_prompt = system_prompt_rag
instruction = """
Context: {context}
Chat history: {chat_history}
User: {question}
Bot: answer """
elif usage == 'Chat':
system_prompt = system_prompt_chat
instruction = """
Chat history: {chat_history}
User: {question}
Bot: answer """
elif usage == 'Task':
system_prompt = system_prompt_task
instruction = """
Context: {context}
User: {question}
Bot: answer """
if r_llm == gpt3p5 or r_llm == gpt4:
template = system_prompt + instruction
else:
entry = local_model_names.index(r_llm)
if local_model_tuples[entry][4] == 'llama':
template = B_INST + B_SYS_LLAMA + system_prompt + E_SYS_LLAMA + instruction + E_INST
elif local_model_tuples[entry][4] == 'mistral':
template = B_SYS_MIS + B_INST + system_prompt + E_INST + E_SYS_MIS + B_INST + instruction + E_INST
elif local_model_tuples[entry][4] == 'mixtral':
template = B_SYS_MIXTRAL + system_prompt + E_SYS_MIXTRAL + B_INST + instruction + E_INST
else:
# Handle other models or raise an exception
pass
if usage == 'RAG':
prompt = PromptTemplate(
input_variables=["context", "chat_history", "question"], template=template
)
elif usage == 'Chat':
prompt = PromptTemplate(
input_variables=["chat_history", "question"], template=template
)
elif usage == 'Task':
prompt = PromptTemplate(
input_variables=["context", "question"], template=template
)
return prompt
def setup_em_llm(OPENAI_API_KEY, temperature, r_llm, local_llm_path, usage):
if (r_llm == gpt3p5 or r_llm == gpt4) and OPENAI_API_KEY:
# Set up OpenAI embeddings
embeddings = OpenAIEmbeddings(openai_api_key=OPENAI_API_KEY)
# Use Open AI LLM with gpt-3.5-turbo or gpt-4.
# Set the temperature to be 0 if you do not want it to make up things
llm = ChatOpenAI(temperature=temperature, model_name=r_llm, streaming=True,
openai_api_key=OPENAI_API_KEY)
else:
if usage == 'RAG':
em_model_name='sentence-transformers/all-mpnet-base-v2'
embeddings = HuggingFaceEmbeddings(model_name=em_model_name)
else:
embeddings = []
llm = use_local_llm(r_llm, local_llm_path, temperature)
return embeddings, llm
def load_chat_history(CHAT_HISTORY_FILENAME):
try:
with open(CHAT_HISTORY_FILENAME, 'r') as f:
chat_history = json.load(f)
except (FileNotFoundError, json.JSONDecodeError):
chat_history = []
return chat_history
def save_chat_history(chat_history, CHAT_HISTORY_FILENAME):
with open(CHAT_HISTORY_FILENAME, 'w') as f:
json.dump(chat_history, f)
pinecone_index_name, chroma_collection_name, persist_directory, docsearch_ready, directory_name = init()
def main(pinecone_index_name, chroma_collection_name, persist_directory, docsearch_ready, directory_name):
docsearch_ready = False
chat_history = []
latest_chats = []
reply = ''
source = ''
LLMs = [gpt3p5, gpt4] + local_model_names
usage = 'RAG'
local_llm_path = './models/'
user_llm_path = ''
hist_fn = ''
# Get user input of whether to use Pinecone or not
col1, col2, col3 = st.columns([1, 1, 1])
# create the radio buttons and text input fields
with col1:
usage = st.radio('Usage: RAG for ingested files, chat (no files), or task (for all ingested texts)', ('RAG', 'Chat', 'Task'))
temperature = st.slider('Temperature', 0.0, 1.0, 0.1)
if usage == 'RAG':
r_pinecone = st.radio('Vector store:', ('Pinecone (online)', 'Chroma (local)'))
k_sources = st.slider('# source(s) to print out', 0, 20, 2)
r_ingest = st.radio('Ingest file(s)?', ('Yes', 'No'))
if r_pinecone == 'Pinecone (online)':
use_pinecone = True
else:
use_pinecone = False
if usage == 'Task':
r_ingest = 'Yes'
with col2:
r_llm = st.radio(label='LLM:', options=LLMs)
if r_llm == gpt3p5 or r_llm == gpt4:
use_openai = True
else:
use_openai = False
if use_openai == True:
OPENAI_API_KEY = st.text_input(
"OpenAI API key:", type="password")
else:
OPENAI_API_KEY = ''
if usage == 'RAG' and use_pinecone == True:
st.write('Local GPT model (and local embedding model) is selected. Online vector store is selected.')
elif usage == 'RAG' and use_pinecone == False:
st.write('Local GPT model (and local embedding model) and local vector store are selected. All info remains local.')
else:
st.write('Local GPT model is selected. All info remains local.')
with col3:
if usage == 'RAG':
if use_pinecone == True:
PINECONE_API_KEY = st.text_input(
"Pinecone API key:", type="password")
PINECONE_API_ENV = st.text_input(
"Pinecone API env:", type="password")
pinecone_index_name = st.text_input('Pinecone index:')
pinecone.init(api_key=PINECONE_API_KEY,
environment=PINECONE_API_ENV)
else:
chroma_collection_name = st.text_input(
'''Chroma collection name of 3-63 characters:''')
persist_directory = "./vectorstore"
else:
hist_fn = st.text_input('Chat history filename')
if use_openai == False:
user_llm_path = st.text_input(
"Path for local model (TO BE DOWNLOADED IF NOT EXISTING), type 'default' to use default path:",
placeholder="default")
if 'default' in user_llm_path:
user_llm_path = local_llm_path
if ( (pinecone_index_name or chroma_collection_name or usage == 'Task' or usage == 'Chat')
and ( (use_openai and OPENAI_API_KEY) or (not use_openai and user_llm_path) ) ):
embeddings, llm = setup_em_llm(OPENAI_API_KEY, temperature, r_llm, user_llm_path, usage)
#if ( pinecone_index_name or chroma_collection_name ) and embeddings and llm:
session_name = pinecone_index_name + chroma_collection_name + hist_fn
if usage != 'Chat':
if r_ingest.lower() == 'yes':
files = st.file_uploader(
'Upload Files', accept_multiple_files=True)
if files:
save_file(files)
all_texts, n_texts = load_files()
if usage == 'RAG':
docsearch = ingest(all_texts, use_pinecone, embeddings, pinecone_index_name,
chroma_collection_name, persist_directory)
docsearch_ready = True
else:
st.write(
'No data is to be ingested. Make sure the Pinecone index or Chroma collection name you provided contains data.')
docsearch, n_texts = setup_docsearch(use_pinecone, pinecone_index_name,
embeddings, chroma_collection_name, persist_directory)
docsearch_ready = True
else:
docsearch_ready = True
if docsearch_ready:
prompt = setup_prompt(r_llm, usage)
#if usage == 'RAG' or usage == 'Chat':
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True, output_key='answer')
if usage == 'RAG':
# number of sources (split-documents when ingesting files); default is 4
k = min([20, n_texts])
retriever = setup_retriever(docsearch, k)
CRqa = ConversationalRetrievalChain.from_llm(
llm,
chain_type="stuff",
retriever=retriever,
memory=memory,
return_source_documents=True,
combine_docs_chain_kwargs={'prompt': prompt},
)
elif usage == 'Chat':
CRqa = LLMChain(
llm=llm,
prompt=prompt,
)
elif usage == 'Task':
CRqa = load_qa_chain(
llm=llm,
chain_type="stuff",
prompt=prompt
)
st.title(':blue[Chatbot]')
# Get user input
query = st.text_area('Enter your question:', height=10,
placeholder='''Summarize the context.
\nAfter typing your question, click on SUBMIT to send it to the bot.''')
submitted = st.button('SUBMIT')
CHAT_HISTORY_FILENAME = f"chat_history/{session_name}_chat_hist.json"
chat_history = load_chat_history(CHAT_HISTORY_FILENAME)
st.markdown('<style>.my_title { font-weight: bold; color: red; }</style>', unsafe_allow_html=True)
if query and submitted:
# Generate a reply based on the user input and chat history
chat_history = [(user, bot)
for user, bot in chat_history]
if usage == 'RAG':
reply, source = get_response(query, chat_history, CRqa)
elif usage == 'Chat':
reply = CRqa({"question": query, "chat_history": chat_history, "return_only_outputs": True})
reply = reply['text']
elif usage == 'Task':
reply = []
for a_text in all_texts:
output_text = CRqa.run(input_documents=[a_text], question=query )
reply.append ( output_text )
# Update the chat history with the user input and system response
chat_history.append(('User', query))
chat_history.append(('Bot', reply))
save_chat_history(chat_history, CHAT_HISTORY_FILENAME)
c = chat_history[-4:]
if len(chat_history) >= 4:
latest_chats = [c[2],c[3],c[0],c[1]]
else:
latest_chats = c
if latest_chats:
chat_history_str1 = '<br>'.join([f'<span class=\"my_title\">{x[0]}:</span> {x[1]}' for x in latest_chats])
st.markdown(f'<div class=\"chat-record\">{chat_history_str1}</div>', unsafe_allow_html=True)
if usage == 'RAG' and reply and source:
# Display sources
for i, source_i in enumerate(source):
if i < k_sources:
if len(source_i.page_content) > 400:
page_content = source_i.page_content[:400]
else:
page_content = source_i.page_content
if source_i.metadata:
metadata_source = source_i.metadata['source']
st.markdown(f"<h3 class='my_title'>Source {i+1}: {metadata_source}</h3> <br> {page_content}", unsafe_allow_html=True)
else:
st.markdown(f"<h3 class='my_title'>Source {i+1}: </h3> <br> {page_content}", unsafe_allow_html=True)
all_chats = chat_history
all_chat_history_str = '\n'.join(
[f'{x[0]}: {x[1]}' for x in all_chats])
st.title(':blue[All chat records]')
st.text_area('Chat records in ascending order:', value=all_chat_history_str, height=250, label_visibility='collapsed')
if __name__ == '__main__':
main(pinecone_index_name, chroma_collection_name, persist_directory,
docsearch_ready, directory_name)
|