README / eval_pipeline.py
annabellatian's picture
Upload eval_pipeline.py
d6ed348 verified
import pandas as pd
from sklearn.model_selection import train_test_split
from google.colab import drive
import torch
from torch.utils.data import Dataset, DataLoader
from transformers import BertTokenizer, BertForSequenceClassification, AdamW
from sklearn.metrics import accuracy_score, classification_report
dataset_path = ""
model_path = ""
news_df = pd.read_csv(dataset_path)
X = news_df['title']
y = news_df['labels']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1)
X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.25, random_state=1) # 0.25 x 0.8 = 0.2
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
def tokenize_data(texts, tokenizer, max_len=128):
return tokenizer(
list(texts),
padding=True,
truncation=True,
max_length=max_len,
return_tensors="pt"
)
# Tokenize the training and test datasets
train_encodings = tokenize_data(X_train, tokenizer)
test_encodings = tokenize_data(X_test, tokenizer)
# Create a custom Dataset class
class NewsDataset(Dataset):
def __init__(self, encodings, labels):
self.encodings = encodings
self.labels = labels
def __len__(self):
return len(self.labels)
def __getitem__(self, idx):
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
item['labels'] = torch.tensor(self.labels[idx])
return item
train_dataset = NewsDataset(train_encodings, y_train.tolist())
test_dataset = NewsDataset(test_encodings, y_test.tolist())
# Load DataLoader for batching
train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=16)
model = BertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2)
model.load_state_dict(torch.load(model_path))
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
model.to(device)
# Define optimizer and scheduler
# optimizer = AdamW(model.parameters(), lr=5e-5)
# num_training_steps = len(train_loader) * 4 # Assume 4 epochs
# lr_scheduler = get_scheduler("linear", optimizer=optimizer, num_warmup_steps=0, num_training_steps=num_training_steps)
# Evaluate the model
def evaluate_model(model, test_loader):
model.eval()
y_true, y_pred = [], []
with torch.no_grad():
for batch in test_loader:
batch = {k: v.to(device) for k, v in batch.items()}
outputs = model(**batch)
logits = outputs.logits
predictions = torch.argmax(logits, dim=-1)
y_true.extend(batch['labels'].tolist())
y_pred.extend(predictions.tolist())
return y_true, y_pred
y_true, y_pred = evaluate_model(model, test_loader)
# Print evaluation metrics
print(f"Accuracy: {accuracy_score(y_true, y_pred):.4f}")
print("Classification Report:\n", classification_report(y_true, y_pred))