Spaces:
Sleeping
Sleeping
File size: 6,840 Bytes
cf8a522 92f45fe 7716c5c 8e1d297 92f45fe cccaa8e cc18787 8e1d297 4c77f62 8e1d297 92f45fe 7716c5c 92f45fe 7716c5c 9753cc9 92f45fe 9753cc9 92f45fe 6637415 92f45fe 8e1d297 cc18787 7716c5c cc18787 7716c5c cc18787 7716c5c 388c471 6637415 cc18787 d836318 cc18787 d836318 cc18787 d836318 cccaa8e 7716c5c 8e1d297 6088e9d cc18787 8e1d297 cc18787 cccaa8e cc18787 cccaa8e cc18787 cccaa8e cc18787 8e1d297 586dcd2 8e1d297 cccaa8e 3661e7e cc18787 3661e7e 8e1d297 3661e7e 7716c5c 8e1d297 3661e7e d836318 8e1d297 3661e7e 8e1d297 d836318 3661e7e cccaa8e 3661e7e cc18787 3661e7e cc18787 3661e7e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
import os
import tempfile
import re
import streamlit as st
import docx
import textract
from sentence_transformers import SentenceTransformer, util
from transformers import pipeline
#####################################
# Function: Extract Text from File
#####################################
def extract_text_from_file(file_obj):
"""
Extract text from .doc and .docx files.
Returns the extracted text or an error message if extraction fails.
"""
filename = file_obj.name
ext = os.path.splitext(filename)[1].lower()
text = ""
if ext == ".docx":
try:
document = docx.Document(file_obj)
text = "\n".join([para.text for para in document.paragraphs])
except Exception as e:
text = f"Error processing DOCX file: {e}"
elif ext == ".doc":
try:
# textract requires a file name; save the file temporarily.
with tempfile.NamedTemporaryFile(delete=False, suffix=".doc") as tmp:
tmp.write(file_obj.read())
tmp.flush()
tmp_filename = tmp.name
text = textract.process(tmp_filename).decode("utf-8")
except Exception as e:
text = f"Error processing DOC file: {e}"
finally:
try:
os.remove(tmp_filename)
except Exception:
pass
else:
text = "Unsupported file type."
return text
#####################################
# Function: Summarize Resume Text using a Transformer Model
#####################################
@st.cache_resource(show_spinner=False)
def load_summarizer():
"""
Loads the summarization pipeline using a transformer model.
We use the model "ainize/bart-base-cnn" for summarization.
"""
return pipeline("summarization", model="spursyy/mT5_multilingual_XLSum_rust")
def summarize_resume_text(resume_text):
"""
Generates a concise summary of the resume text using the summarization model.
If the resume text is very long, we trim it to avoid hitting the model's maximum input size.
"""
summarizer = load_summarizer()
# In case the resume text is too long, we trim it.
max_input_length = 1024 # adjust as needed
if len(resume_text) > max_input_length:
resume_text = resume_text[:max_input_length]
# The summarization pipeline returns a list of summaries.
summary_result = summarizer(resume_text, max_length=150, min_length=40, do_sample=False)
candidate_summary = summary_result[0]['summary_text']
return candidate_summary
#####################################
# Function: Compare Candidate Summary to Company Prompt
#####################################
def compute_suitability(candidate_summary, company_prompt, model):
"""
Compute the cosine similarity between candidate summary and company prompt embeddings.
Returns a score in the range [0, 1].
"""
candidate_embed = model.encode(candidate_summary, convert_to_tensor=True)
company_embed = model.encode(company_prompt, convert_to_tensor=True)
cosine_sim = util.cos_sim(candidate_embed, company_embed)
score = float(cosine_sim.item())
return score
#####################################
# Main Resume Processing Logic
#####################################
def process_resume(file_obj):
"""
Extracts text from the uploaded file and then generates a summary
using a text summarization model.
"""
resume_text = extract_text_from_file(file_obj)
candidate_summary = summarize_resume_text(resume_text)
return candidate_summary
#####################################
# Load the Sentence-BERT Model (Semantic Similarity Model)
#####################################
@st.cache_resource(show_spinner=False)
def load_sbert_model():
# This loads the Sentence-BERT model "all-MiniLM-L6-v2"
return SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
# Load Sentence-BERT model for computing semantic similarity.
sbert_model = load_sbert_model()
#####################################
# Streamlit Interface
#####################################
st.title("Resume Analyzer and Company Suitability Checker")
st.markdown(
"""
Upload your resume file in **.doc** or **.docx** format. The app performs the following tasks:
1. Extracts text from the resume.
2. Uses a transformer-based text summarization model (**ainize/bart-base-cnn**) to generate a concise candidate summary.
3. Compares the candidate summary with a company profile (using Sentence-BERT) to produce a suitability score.
"""
)
# File uploader for resume
uploaded_file = st.file_uploader("Upload Resume", type=["doc", "docx"])
# Button to process the resume and store the summary in session state.
if st.button("Process Resume"):
if uploaded_file is None:
st.error("Please upload a resume file first.")
else:
with st.spinner("Processing resume..."):
candidate_summary = process_resume(uploaded_file)
st.session_state["candidate_summary"] = candidate_summary
st.subheader("Candidate Summary")
st.markdown(candidate_summary)
# Pre-defined company prompt for Google LLC.
default_company_prompt = (
"Google LLC, a global leader in technology and innovation, specializes in internet services, cloud computing, "
"artificial intelligence, and software development. As part of Alphabet Inc., Google seeks candidates with strong "
"problem-solving skills, adaptability, and collaboration abilities. Technical roles require proficiency in programming "
"languages such as Python, Java, C++, Go, or JavaScript, with expertise in data structures, algorithms, and system design. "
"Additionally, skills in AI, cybersecurity, UX/UI design, and digital marketing are highly valued. Google fosters a culture "
"of innovation, expecting candidates to demonstrate creativity, analytical thinking, and a passion for cutting-edge technology."
)
# Company prompt text area.
company_prompt = st.text_area(
"Enter company details:",
value=default_company_prompt,
height=150,
)
# Button to compute the suitability score.
if st.button("Compute Suitability Score"):
if "candidate_summary" not in st.session_state:
st.error("Please process the resume first!")
else:
candidate_summary = st.session_state["candidate_summary"]
if candidate_summary.strip() == "":
st.error("Candidate summary is empty; please check your resume file.")
elif company_prompt.strip() == "":
st.error("Please enter the company information.")
else:
with st.spinner("Computing suitability score..."):
score = compute_suitability(candidate_summary, company_prompt, sbert_model)
st.success(f"Suitability Score: {score:.2f} (range 0 to 1)") |