Spaces:
Sleeping
Sleeping
File size: 6,395 Bytes
cf8a522 92f45fe 7716c5c 8e1d297 92f45fe 8e1d297 4c77f62 8e1d297 92f45fe 7716c5c 92f45fe 7716c5c 9753cc9 92f45fe 9753cc9 92f45fe 6637415 92f45fe 8e1d297 7716c5c 6637415 7716c5c 6637415 50528fd 7716c5c 50528fd 7716c5c 6637415 7716c5c 6637415 7716c5c d836318 6637415 7716c5c 6637415 7716c5c 6637415 50528fd 6637415 50528fd 6637415 7716c5c d836318 6637415 d836318 50528fd d836318 50528fd d836318 50528fd 6637415 50528fd 6637415 50528fd d836318 7716c5c 8e1d297 6088e9d 8e1d297 6088e9d 50528fd 8e1d297 50528fd 7716c5c 6637415 d836318 8e1d297 586dcd2 8e1d297 50528fd 7716c5c 6637415 7716c5c 8e1d297 7716c5c 8e1d297 d836318 8e1d297 9753cc9 8e1d297 d836318 7716c5c 6637415 50528fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
import os
import tempfile
import re
import streamlit as st
import docx
import textract
#####################################
# Function: Extract Text from File
#####################################
def extract_text_from_file(file_obj):
"""
Extract text from .doc and .docx files.
Returns the extracted text or an error message if extraction fails.
"""
filename = file_obj.name
ext = os.path.splitext(filename)[1].lower()
text = ""
if ext == ".docx":
try:
document = docx.Document(file_obj)
text = "\n".join([para.text for para in document.paragraphs])
except Exception as e:
text = f"Error processing DOCX file: {e}"
elif ext == ".doc":
try:
# textract requires a file name; save the file temporarily.
with tempfile.NamedTemporaryFile(delete=False, suffix=".doc") as tmp:
tmp.write(file_obj.read())
tmp.flush()
tmp_filename = tmp.name
text = textract.process(tmp_filename).decode("utf-8")
except Exception as e:
text = f"Error processing DOC file: {e}"
finally:
try:
os.remove(tmp_filename)
except Exception:
pass
else:
text = "Unsupported file type."
return text
#####################################
# Function: Extract Basic Resume Information
#####################################
def extract_basic_resume_info(text):
"""
Parse the extracted text to extract/summarize:
- Name
- Age
- Job Experience (capturing the block under the "experience" section)
- Skills
- Education
Returns a dictionary with the extracted elements.
"""
info = {
"Name": None,
"Age": None,
"Job Experience": None,
"Skills": None,
"Education": None,
}
# Extract Name (e.g., "Name: John Doe" or from heuristics)
name_match = re.search(r"[Nn]ame[:\-]\s*([A-Za-z\s,]+)", text)
if name_match:
info["Name"] = name_match.group(1).strip()
else:
# Heuristic: Assume the first line or a line with two or three capitalized words is the candidate's name.
potential_names = re.findall(r"\b[A-Z][a-z]+(?:\s+[A-Z][a-z]+){1,2}\b", text)
if potential_names:
info["Name"] = potential_names[0]
# Extract Age (e.g., "Age: 28")
age_match = re.search(r"[Aa]ge[:\-]\s*(\d{1,3})", text)
if age_match:
info["Age"] = age_match.group(1)
# Extract Job Experience using the "experience" section.
# This regex captures everything after the word "experience" until the next section heading (e.g., "additional information" or "skills")
experience_match = re.search(r"experience\s*(.*?)(?:\n\s*\n|additional information|$)", text, re.IGNORECASE | re.DOTALL)
if experience_match:
# Clean up the extracted block by removing any extra whitespace or newlines.
job_experience = experience_match.group(1).strip()
info["Job Experience"] = " ".join(job_experience.split())
else:
# Fallback if a labeled section isn't found.
exp_match = re.search(r"(\d+)\s+(years|yrs)\s+(?:of\s+)?experience", text, re.IGNORECASE)
if exp_match:
info["Job Experience"] = f"{exp_match.group(1)} {exp_match.group(2)}"
# Extract Skills (e.g., "Skills: Python, Java, SQL")
skills_match = re.search(r"(Skills|Technical Skills)[:\-]\s*(.+)", text, re.IGNORECASE)
if skills_match:
skills_str = skills_match.group(2).strip()
info["Skills"] = skills_str.rstrip(".")
# Extract Education (e.g., "Education: ...")
edu_match = re.search(r"education\s*(.*?)(?:\n\s*\n|experience|$)", text, re.IGNORECASE | re.DOTALL)
if edu_match:
education_block = edu_match.group(1).strip()
info["Education"] = " ".join(education_block.split())
else:
# Fallback: search for lines starting with common degree words.
edu_match = re.search(r"(Bachelor|Master|B\.Sc|M\.Sc|Ph\.D)[^\n]+", text)
if edu_match:
info["Education"] = edu_match.group(0)
return info
#####################################
# Function: Summarize Basic Info into a Paragraph
#####################################
def summarize_basic_info(info):
"""
Combine the extracted resume elements into a concise summary paragraph.
"""
parts = []
if info.get("Name"):
parts.append(f"Candidate {info['Name']}")
else:
parts.append("The candidate")
if info.get("Age"):
parts.append(f"aged {info['Age']}")
if info.get("Job Experience"):
parts.append(f"with job experience: {info['Job Experience']}")
if info.get("Skills"):
parts.append(f"skilled in {info['Skills']}")
if info.get("Education"):
parts.append(f"and educated in {info['Education']}")
summary_paragraph = ", ".join(parts) + "."
return summary_paragraph
#####################################
# Main Resume Processing Logic
#####################################
def process_resume(file_obj):
if file_obj is None:
return None, None
# Extract the full resume text.
resume_text = extract_text_from_file(file_obj)
# Extract basic info from the text.
basic_info = extract_basic_resume_info(resume_text)
# Create a summary paragraph from the basic info.
summary_paragraph = summarize_basic_info(basic_info)
return resume_text, summary_paragraph
#####################################
# Streamlit Interface
#####################################
st.title("Resume Basic Information Summary")
st.markdown("""
Upload your resume file in **.doc** or **.docx** format. The app extracts key details such as name, age, job experience, skills,
and education, then summarizes them into a single paragraph.
""")
uploaded_file = st.file_uploader("Upload Resume", type=["doc", "docx"])
if st.button("Process Resume"):
if uploaded_file is None:
st.error("Please upload a file first.")
else:
with st.spinner("Processing resume..."):
resume_text, summary_paragraph = process_resume(uploaded_file)
st.subheader("Summary Paragraph")
st.markdown(summary_paragraph)
st.subheader("Full Extracted Resume Text")
st.text_area("", resume_text, height=300) |