File size: 8,416 Bytes
cf8a522
92f45fe
8e1d297
92f45fe
 
cc18787
d2d6501
 
 
8e1d297
 
d2d6501
c6d228e
d2d6501
c6d228e
d2d6501
 
 
 
 
 
 
 
 
 
 
c6d228e
 
d2d6501
8e1d297
 
92f45fe
7716c5c
 
92f45fe
 
 
 
7716c5c
 
9753cc9
92f45fe
c6d228e
9753cc9
92f45fe
 
 
 
 
 
 
c6d228e
92f45fe
 
 
 
 
8e1d297
 
d2d6501
7716c5c
c6d228e
d836318
d2d6501
d836318
c6d228e
d2d6501
 
c6d228e
 
cc18787
d2d6501
c6d228e
 
 
 
 
 
 
 
 
 
 
 
0d4f4dd
cc18787
d836318
cccaa8e
d2d6501
cccaa8e
c6d228e
cccaa8e
d2d6501
cccaa8e
 
b0dca97
c6d228e
b0dca97
 
 
 
 
c6d228e
b0dca97
 
cccaa8e
 
7716c5c
d2d6501
8e1d297
d2d6501
 
cc18787
d2d6501
 
 
 
 
 
cccaa8e
d2d6501
 
 
 
 
 
c6d228e
d2d6501
 
c6d228e
d2d6501
 
 
 
c6d228e
d2d6501
 
 
 
 
 
 
 
 
c6d228e
d2d6501
c6d228e
d2d6501
 
 
 
3661e7e
d2d6501
 
 
 
 
 
 
 
 
 
3661e7e
d2d6501
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6d228e
d2d6501
 
 
 
 
 
 
 
 
 
 
 
 
 
c6d228e
d2d6501
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import os
import tempfile
import streamlit as st
import docx
import textract
from transformers import pipeline

# Set page title
st.set_page_config(page_title="Resume Analyzer and Company Suitability Checker")

#####################################
# Preload Models
#####################################
@st.cache_resource(show_spinner=True)
def load_models():
    """Load all models at startup"""
    with st.spinner("Loading AI models... This may take a minute on first run."):
        models = {}
        # Load summarization model
        models['summarizer'] = pipeline("summarization", model="google/pegasus-xsum")
        # Load similarity model
        models['similarity'] = pipeline("sentence-similarity", model="sentence-transformers/all-MiniLM-L6-v2")
        return models

# Preload models immediately when app starts
models = load_models()

#####################################
# Function: Extract Text from File
#####################################
def extract_text_from_file(file_obj):
    """
    Extract text from .doc and .docx files.
    Returns the extracted text or an error message if extraction fails.
    """
    filename = file_obj.name
    ext = os.path.splitext(filename)[1].lower()
    text = ""

    if ext == ".docx":
        try:
            document = docx.Document(file_obj)
            text = "\n".join(para.text for para in document.paragraphs if para.text.strip())
        except Exception as e:
            text = f"Error processing DOCX file: {e}"
    elif ext == ".doc":
        try:
            with tempfile.NamedTemporaryFile(delete=False, suffix=".doc") as tmp:
                tmp.write(file_obj.read())
                tmp_filename = tmp.name
            text = textract.process(tmp_filename).decode("utf-8")
            os.unlink(tmp_filename)
        except Exception as e:
            text = f"Error processing DOC file: {e}"
    else:
        text = "Unsupported file type."
    return text

#####################################
# Function: Summarize Resume Text
#####################################
def summarize_resume_text(resume_text, models):
    """
    Generates a concise summary of the resume text using the summarization model.
    """
    summarizer = models['summarizer']
    
    # Handle long text
    max_input_length = 1024  # PEGASUS-XSUM limit
    
    if len(resume_text) > max_input_length:
        # Process in chunks if text is too long
        chunks = [resume_text[i:i+max_input_length] for i in range(0, min(len(resume_text), 3*max_input_length), max_input_length)]
        summaries = []
        
        for chunk in chunks:
            chunk_summary = summarizer(chunk, max_length=100, min_length=30, do_sample=False)[0]['summary_text']
            summaries.append(chunk_summary)
        
        candidate_summary = " ".join(summaries)
        if len(candidate_summary) > max_input_length:
            candidate_summary = summarizer(candidate_summary[:max_input_length], max_length=150, min_length=40, do_sample=False)[0]['summary_text']
    else:
        candidate_summary = summarizer(resume_text, max_length=150, min_length=40, do_sample=False)[0]['summary_text']
    
    return candidate_summary

#####################################
# Function: Compare Candidate Summary to Company Prompt
#####################################
def compute_suitability(candidate_summary, company_prompt, models):
    """
    Compute the similarity between candidate summary and company prompt.
    Returns a score in the range [0, 1].
    """
    similarity_pipeline = models['similarity']
    
    # The pipeline expects a document and a list of candidates to compare to
    result = similarity_pipeline(
        candidate_summary,
        [company_prompt]
    )
    
    # Extract the similarity score from the result
    score = result[0]['score']
    return score

#####################################
# Streamlit Interface
#####################################
st.title("Resume Analyzer and Company Suitability Checker")
st.markdown(
    """
Upload your resume file in **.doc** or **.docx** format. The app performs the following tasks:
1. Extracts text from the resume.
2. Uses a transformer-based model to generate a concise candidate summary.
3. Compares the candidate summary with a company profile to produce a suitability score.
"""
)

# Use two columns with equal width
col1, col2 = st.columns(2)

with col1:
    # File uploader for resume
    uploaded_file = st.file_uploader("Upload Resume", type=["doc", "docx"])
    
    if uploaded_file is not None:
        st.write(f"{uploaded_file.name}  {uploaded_file.size/1024:.1f}KB")
    
    # Button to process the resume
    if st.button("Process Resume", type="primary", use_container_width=True):
        if uploaded_file is None:
            st.error("Please upload a resume file first.")
        else:
            with st.status("Processing resume...") as status:
                status.update(label="Extracting text from resume...")
                resume_text = extract_text_from_file(uploaded_file)
                
                if not resume_text or resume_text.strip() == "":
                    status.update(label="Error: No text could be extracted", state="error")
                else:
                    status.update(label=f"Extracted {len(resume_text)} characters. Generating summary...")
                    candidate_summary = summarize_resume_text(resume_text, models)
                    st.session_state["candidate_summary"] = candidate_summary
                    status.update(label="Processing complete!", state="complete")
    
    # Display candidate summary if available
    if "candidate_summary" in st.session_state:
        st.subheader("Candidate Summary")
        st.markdown(st.session_state["candidate_summary"])

with col2:
    # Pre-defined company prompt for Google LLC.
    default_company_prompt = (
        "Google LLC, a global leader in technology and innovation, specializes in internet services, cloud computing, "
        "artificial intelligence, and software development. As part of Alphabet Inc., Google seeks candidates with strong "
        "problem-solving skills, adaptability, and collaboration abilities. Technical roles require proficiency in programming "
        "languages such as Python, Java, C++, Go, or JavaScript, with expertise in data structures, algorithms, and system design. "
        "Additionally, skills in AI, cybersecurity, UX/UI design, and digital marketing are highly valued. Google fosters a culture "
        "of innovation, expecting candidates to demonstrate creativity, analytical thinking, and a passion for cutting-edge technology."
    )

    # Company prompt text area.
    company_prompt = st.text_area(
        "Enter company details:",
        value=default_company_prompt,
        height=150,
    )

    # Button to compute the suitability score.
    if st.button("Compute Suitability Score", type="primary", use_container_width=True):
        if "candidate_summary" not in st.session_state:
            st.error("Please process the resume first!")
        else:
            candidate_summary = st.session_state["candidate_summary"]
            if candidate_summary.strip() == "":
                st.error("Candidate summary is empty; please check your resume file.")
            elif company_prompt.strip() == "":
                st.error("Please enter the company information.")
            else:
                with st.spinner("Computing suitability score..."):
                    score = compute_suitability(candidate_summary, company_prompt, models)
                
                # Display score with a progress bar for visual feedback
                st.success(f"Suitability Score: {score:.2f} (range 0 to 1)")
                st.progress(score)
                
                # Add interpretation of score
                if score > 0.75:
                    st.info("Excellent match! Your profile appears very well suited for this company.")
                elif score > 0.5:
                    st.info("Good match. Your profile aligns with many aspects of the company's requirements.")
                elif score > 0.3:
                    st.info("Moderate match. Consider highlighting more relevant skills or experience.")
                else:
                    st.info("Low match. Your profile may need significant adjustments to better align with this company.")