Spaces:
Sleeping
Sleeping
File size: 8,416 Bytes
cf8a522 92f45fe 8e1d297 92f45fe cc18787 d2d6501 8e1d297 d2d6501 c6d228e d2d6501 c6d228e d2d6501 c6d228e d2d6501 8e1d297 92f45fe 7716c5c 92f45fe 7716c5c 9753cc9 92f45fe c6d228e 9753cc9 92f45fe c6d228e 92f45fe 8e1d297 d2d6501 7716c5c c6d228e d836318 d2d6501 d836318 c6d228e d2d6501 c6d228e cc18787 d2d6501 c6d228e 0d4f4dd cc18787 d836318 cccaa8e d2d6501 cccaa8e c6d228e cccaa8e d2d6501 cccaa8e b0dca97 c6d228e b0dca97 c6d228e b0dca97 cccaa8e 7716c5c d2d6501 8e1d297 d2d6501 cc18787 d2d6501 cccaa8e d2d6501 c6d228e d2d6501 c6d228e d2d6501 c6d228e d2d6501 c6d228e d2d6501 c6d228e d2d6501 3661e7e d2d6501 3661e7e d2d6501 c6d228e d2d6501 c6d228e d2d6501 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
import os
import tempfile
import streamlit as st
import docx
import textract
from transformers import pipeline
# Set page title
st.set_page_config(page_title="Resume Analyzer and Company Suitability Checker")
#####################################
# Preload Models
#####################################
@st.cache_resource(show_spinner=True)
def load_models():
"""Load all models at startup"""
with st.spinner("Loading AI models... This may take a minute on first run."):
models = {}
# Load summarization model
models['summarizer'] = pipeline("summarization", model="google/pegasus-xsum")
# Load similarity model
models['similarity'] = pipeline("sentence-similarity", model="sentence-transformers/all-MiniLM-L6-v2")
return models
# Preload models immediately when app starts
models = load_models()
#####################################
# Function: Extract Text from File
#####################################
def extract_text_from_file(file_obj):
"""
Extract text from .doc and .docx files.
Returns the extracted text or an error message if extraction fails.
"""
filename = file_obj.name
ext = os.path.splitext(filename)[1].lower()
text = ""
if ext == ".docx":
try:
document = docx.Document(file_obj)
text = "\n".join(para.text for para in document.paragraphs if para.text.strip())
except Exception as e:
text = f"Error processing DOCX file: {e}"
elif ext == ".doc":
try:
with tempfile.NamedTemporaryFile(delete=False, suffix=".doc") as tmp:
tmp.write(file_obj.read())
tmp_filename = tmp.name
text = textract.process(tmp_filename).decode("utf-8")
os.unlink(tmp_filename)
except Exception as e:
text = f"Error processing DOC file: {e}"
else:
text = "Unsupported file type."
return text
#####################################
# Function: Summarize Resume Text
#####################################
def summarize_resume_text(resume_text, models):
"""
Generates a concise summary of the resume text using the summarization model.
"""
summarizer = models['summarizer']
# Handle long text
max_input_length = 1024 # PEGASUS-XSUM limit
if len(resume_text) > max_input_length:
# Process in chunks if text is too long
chunks = [resume_text[i:i+max_input_length] for i in range(0, min(len(resume_text), 3*max_input_length), max_input_length)]
summaries = []
for chunk in chunks:
chunk_summary = summarizer(chunk, max_length=100, min_length=30, do_sample=False)[0]['summary_text']
summaries.append(chunk_summary)
candidate_summary = " ".join(summaries)
if len(candidate_summary) > max_input_length:
candidate_summary = summarizer(candidate_summary[:max_input_length], max_length=150, min_length=40, do_sample=False)[0]['summary_text']
else:
candidate_summary = summarizer(resume_text, max_length=150, min_length=40, do_sample=False)[0]['summary_text']
return candidate_summary
#####################################
# Function: Compare Candidate Summary to Company Prompt
#####################################
def compute_suitability(candidate_summary, company_prompt, models):
"""
Compute the similarity between candidate summary and company prompt.
Returns a score in the range [0, 1].
"""
similarity_pipeline = models['similarity']
# The pipeline expects a document and a list of candidates to compare to
result = similarity_pipeline(
candidate_summary,
[company_prompt]
)
# Extract the similarity score from the result
score = result[0]['score']
return score
#####################################
# Streamlit Interface
#####################################
st.title("Resume Analyzer and Company Suitability Checker")
st.markdown(
"""
Upload your resume file in **.doc** or **.docx** format. The app performs the following tasks:
1. Extracts text from the resume.
2. Uses a transformer-based model to generate a concise candidate summary.
3. Compares the candidate summary with a company profile to produce a suitability score.
"""
)
# Use two columns with equal width
col1, col2 = st.columns(2)
with col1:
# File uploader for resume
uploaded_file = st.file_uploader("Upload Resume", type=["doc", "docx"])
if uploaded_file is not None:
st.write(f"{uploaded_file.name} {uploaded_file.size/1024:.1f}KB")
# Button to process the resume
if st.button("Process Resume", type="primary", use_container_width=True):
if uploaded_file is None:
st.error("Please upload a resume file first.")
else:
with st.status("Processing resume...") as status:
status.update(label="Extracting text from resume...")
resume_text = extract_text_from_file(uploaded_file)
if not resume_text or resume_text.strip() == "":
status.update(label="Error: No text could be extracted", state="error")
else:
status.update(label=f"Extracted {len(resume_text)} characters. Generating summary...")
candidate_summary = summarize_resume_text(resume_text, models)
st.session_state["candidate_summary"] = candidate_summary
status.update(label="Processing complete!", state="complete")
# Display candidate summary if available
if "candidate_summary" in st.session_state:
st.subheader("Candidate Summary")
st.markdown(st.session_state["candidate_summary"])
with col2:
# Pre-defined company prompt for Google LLC.
default_company_prompt = (
"Google LLC, a global leader in technology and innovation, specializes in internet services, cloud computing, "
"artificial intelligence, and software development. As part of Alphabet Inc., Google seeks candidates with strong "
"problem-solving skills, adaptability, and collaboration abilities. Technical roles require proficiency in programming "
"languages such as Python, Java, C++, Go, or JavaScript, with expertise in data structures, algorithms, and system design. "
"Additionally, skills in AI, cybersecurity, UX/UI design, and digital marketing are highly valued. Google fosters a culture "
"of innovation, expecting candidates to demonstrate creativity, analytical thinking, and a passion for cutting-edge technology."
)
# Company prompt text area.
company_prompt = st.text_area(
"Enter company details:",
value=default_company_prompt,
height=150,
)
# Button to compute the suitability score.
if st.button("Compute Suitability Score", type="primary", use_container_width=True):
if "candidate_summary" not in st.session_state:
st.error("Please process the resume first!")
else:
candidate_summary = st.session_state["candidate_summary"]
if candidate_summary.strip() == "":
st.error("Candidate summary is empty; please check your resume file.")
elif company_prompt.strip() == "":
st.error("Please enter the company information.")
else:
with st.spinner("Computing suitability score..."):
score = compute_suitability(candidate_summary, company_prompt, models)
# Display score with a progress bar for visual feedback
st.success(f"Suitability Score: {score:.2f} (range 0 to 1)")
st.progress(score)
# Add interpretation of score
if score > 0.75:
st.info("Excellent match! Your profile appears very well suited for this company.")
elif score > 0.5:
st.info("Good match. Your profile aligns with many aspects of the company's requirements.")
elif score > 0.3:
st.info("Moderate match. Consider highlighting more relevant skills or experience.")
else:
st.info("Low match. Your profile may need significant adjustments to better align with this company.") |