Spaces:
Sleeping
Sleeping
File size: 19,862 Bytes
cf8a522 4077883 8e1d297 92f45fe 2e98a93 e0405b6 1a0f22c e1a5956 d2d6501 5d07781 ca31f44 5d07781 8e1d297 ca31f44 8e1d297 e1a5956 c6d228e d2d6501 5d07781 e1a5956 d2d6501 e1a5956 e0405b6 11cb389 e0405b6 d2d6501 c6d228e 501c91b 8e1d297 e1a5956 501c91b 92f45fe 2e98a93 7716c5c 92f45fe 501c91b 92f45fe 7716c5c 9753cc9 501c91b c6d228e 9753cc9 92f45fe cf98c48 92f45fe cf98c48 d8bcf0c 2e98a93 92f45fe 2e98a93 92f45fe 8e1d297 1a0f22c e1a5956 1a0f22c e1a5956 1a0f22c e1a5956 1a0f22c e1a5956 1a0f22c e1a5956 1a0f22c e1a5956 1a0f22c e1a5956 1a0f22c e1a5956 1a0f22c e1a5956 1a0f22c e1a5956 1a0f22c e1a5956 1a0f22c e1a5956 1a0f22c e1a5956 1a0f22c e1a5956 1a0f22c e1a5956 1a0f22c e1a5956 1a0f22c e1a5956 1a0f22c e1a5956 1a0f22c ca31f44 1a0f22c e1a5956 1a0f22c e1a5956 1a0f22c e1a5956 d204788 e1a5956 d204788 e1a5956 d204788 e1a5956 d204788 e1a5956 d204788 e1a5956 d204788 8e1d297 e1a5956 7716c5c e33d65b d836318 e1a5956 d836318 e0405b6 e33d65b e0405b6 c6d228e e1a5956 e33d65b e1a5956 501c91b e1a5956 2e98a93 1a0f22c d204788 1a0f22c 0d4f4dd e0405b6 2e98a93 d836318 cccaa8e ca31f44 cccaa8e e1a5956 ca31f44 cccaa8e ca31f44 cccaa8e e0405b6 c9f8450 c6d228e 11cb389 ca31f44 11cb389 ca31f44 c9f8450 ca31f44 11cb389 c9f8450 11cb389 c9f8450 11cb389 41d8604 11cb389 41d8604 11cb389 c9f8450 11cb389 ca31f44 11cb389 e0405b6 11cb389 cccaa8e 7716c5c e1a5956 8e1d297 ca31f44 d2d6501 cc18787 ca31f44 d2d6501 cccaa8e ca31f44 e0405b6 2e98a93 d2d6501 e1a5956 ca31f44 e1a5956 e33d65b e1a5956 ca31f44 e1a5956 ca31f44 c9f8450 e1a5956 e0405b6 ca31f44 e1a5956 ca31f44 d2d6501 ca31f44 11cb389 ca31f44 11cb389 c9f8450 ca31f44 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 |
import os
import io
import streamlit as st
import docx
import docx2txt
import tempfile
import time
import re
import concurrent.futures
from functools import lru_cache
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
# Set page title and hide sidebar
st.set_page_config(
page_title="Resume-Google Job Match Analyzer",
initial_sidebar_state="collapsed"
)
# Hide sidebar completely with custom CSS
st.markdown("""
<style>
[data-testid="collapsedControl"] {display: none;}
section[data-testid="stSidebar"] {display: none;}
</style>
""", unsafe_allow_html=True)
# Pre-defined company description for Google
GOOGLE_DESCRIPTION = """Google LLC, a global leader in technology and innovation, specializes in internet services, cloud computing, artificial intelligence, and software development. As part of Alphabet Inc., Google seeks candidates with strong problem-solving skills, adaptability, and collaboration abilities. Technical roles require proficiency in programming languages such as Python, Java, C++, Go, or JavaScript, with expertise in data structures, algorithms, and system design. Additionally, skills in AI, cybersecurity, UX/UI design, and digital marketing are highly valued. Google fosters a culture of innovation, expecting candidates to demonstrate creativity, analytical thinking, and a passion for cutting-edge technology."""
#####################################
# Preload Models - Optimized
#####################################
@st.cache_resource(show_spinner=True)
def load_models():
"""Load models at startup - using smaller/faster models"""
with st.spinner("Loading AI models... This may take a minute on first run."):
models = {}
# Load smaller summarization model for speed
models['summarizer'] = pipeline("summarization", model="facebook/bart-large-cnn", max_length=130)
# Load TinyLlama model for evaluation
models['evaluator'] = pipeline(
"text-generation",
model="TinyLlama/TinyLlama-1.1B-Chat-v1.0",
max_new_tokens=200,
do_sample=True,
temperature=0.7
)
return models
# Preload models immediately when app starts
models = load_models()
#####################################
# Function: Extract Text from File
#####################################
@st.cache_data(show_spinner=False)
def extract_text_from_file(file_obj):
"""
Extract text from .docx and .doc files.
Returns the extracted text or an error message if extraction fails.
"""
filename = file_obj.name
ext = os.path.splitext(filename)[1].lower()
text = ""
if ext == ".docx":
try:
document = docx.Document(file_obj)
text = "\n".join(para.text for para in document.paragraphs if para.text.strip())
except Exception as e:
text = f"Error processing DOCX file: {e}"
elif ext == ".doc":
try:
# For .doc files, we need to save to a temp file
with tempfile.NamedTemporaryFile(delete=False, suffix='.doc') as temp_file:
temp_file.write(file_obj.getvalue())
temp_path = temp_file.name
# Use docx2txt which is generally faster
try:
text = docx2txt.process(temp_path)
except Exception:
text = "Could not process .doc file. Please convert to .docx format."
# Clean up temp file
os.unlink(temp_path)
except Exception as e:
text = f"Error processing DOC file: {e}"
elif ext == ".txt":
try:
text = file_obj.getvalue().decode("utf-8")
except Exception as e:
text = f"Error processing TXT file: {e}"
else:
text = "Unsupported file type. Please upload a .docx, .doc, or .txt file."
return text
#####################################
# Functions for Information Extraction - Optimized
#####################################
# Cache the extraction functions to avoid reprocessing
@lru_cache(maxsize=32)
def extract_name(text_start):
"""Extract candidate name from the beginning of resume text"""
# Only use the first 500 characters to speed up processing
lines = text_start.split('\n')
# Check first few non-empty lines for potential names
potential_name_lines = [line.strip() for line in lines[:5] if line.strip()]
if potential_name_lines:
# First line is often the name if it's short and doesn't contain common headers
first_line = potential_name_lines[0]
if 5 <= len(first_line) <= 40 and not any(x in first_line.lower() for x in ["resume", "cv", "curriculum", "vitae", "profile"]):
return first_line
# Look for lines that might contain a name
for line in potential_name_lines[:3]:
if len(line.split()) <= 4 and not any(x in line.lower() for x in ["address", "phone", "email", "resume", "cv"]):
return line
return "Unknown (please extract from resume)"
def extract_age(text):
"""Extract candidate age from resume text"""
# Simplified: just check a few common patterns
age_patterns = [
r'age:?\s*(\d{1,2})',
r'(\d{1,2})\s*years\s*old',
]
text_lower = text.lower()
for pattern in age_patterns:
matches = re.search(pattern, text_lower)
if matches:
return matches.group(1)
return "Not specified"
def extract_industry(text, base_summary):
"""Extract expected job industry from resume"""
# Simplified industry keywords focused on the most common ones
industry_keywords = {
"technology": ["software", "programming", "developer", "IT", "tech", "computer"],
"finance": ["banking", "financial", "accounting", "finance", "analyst"],
"healthcare": ["medical", "health", "hospital", "clinical", "nurse", "doctor"],
"education": ["teaching", "teacher", "professor", "education", "university"],
"marketing": ["marketing", "advertising", "digital marketing", "social media"],
"engineering": ["engineer", "engineering"],
"data science": ["data science", "machine learning", "AI", "analytics"],
"information systems": ["information systems", "ERP", "systems management"]
}
# Count occurrences of industry keywords - using the summary to speed up
combined_text = base_summary.lower()
counts = {}
for industry, keywords in industry_keywords.items():
counts[industry] = sum(combined_text.count(keyword.lower()) for keyword in keywords)
# Get the industry with the highest count
if counts:
likely_industry = max(counts.items(), key=lambda x: x[1])
if likely_industry[1] > 0:
return likely_industry[0].capitalize()
# Check for educational background that might indicate industry
degrees = ["computer science", "business", "engineering", "medicine", "education", "finance", "marketing"]
for degree in degrees:
if degree in combined_text:
return f"{degree.capitalize()}-related field"
return "Not clearly specified"
def extract_skills_and_work(text):
"""Extract both skills and work experience at once to save processing time"""
# Common skill categories - reduced keyword list for speed
skill_categories = {
"Programming": ["Python", "Java", "JavaScript", "HTML", "CSS", "SQL", "C++", "C#", "Go"],
"Data Science": ["Machine Learning", "Data Analysis", "Statistics", "TensorFlow", "PyTorch", "AI", "Algorithms"],
"Database": ["SQL", "MySQL", "MongoDB", "Database", "NoSQL", "PostgreSQL"],
"Web Development": ["React", "Angular", "Node.js", "Frontend", "Backend", "Full-Stack"],
"Software Development": ["Agile", "Scrum", "Git", "DevOps", "Docker", "System Design"],
"Cloud": ["AWS", "Azure", "Google Cloud", "Cloud Computing"],
"Security": ["Cybersecurity", "Network Security", "Encryption", "Security"],
"Business": ["Project Management", "Business Analysis", "Leadership", "Teamwork"],
"Design": ["UX/UI", "User Experience", "Design Thinking", "Adobe"]
}
# Work experience extraction
work_headers = [
"work experience", "professional experience", "employment history",
"work history", "experience"
]
next_section_headers = [
"education", "skills", "certifications", "projects", "achievements"
]
# Process everything at once
lines = text.split('\n')
text_lower = text.lower()
# Skills extraction
found_skills = []
for category, skills in skill_categories.items():
category_skills = []
for skill in skills:
if skill.lower() in text_lower:
category_skills.append(skill)
if category_skills:
found_skills.append(f"{category}: {', '.join(category_skills)}")
# Work experience extraction - simplified approach
work_section = []
in_work_section = False
for idx, line in enumerate(lines):
line_lower = line.lower().strip()
# Start of work section
if not in_work_section:
if any(header in line_lower for header in work_headers):
in_work_section = True
continue
# End of work section
elif in_work_section:
if any(header in line_lower for header in next_section_headers):
break
if line.strip():
work_section.append(line.strip())
# Simplified work formatting
if not work_section:
work_experience = "Work experience not clearly identified"
else:
# Just take the first 5-7 lines of the work section as a summary
work_lines = []
company_count = 0
current_company = ""
for line in work_section:
# New company entry often has a date
if re.search(r'(19|20)\d{2}', line):
company_count += 1
if company_count <= 3: # Limit to 3 most recent positions
current_company = line
work_lines.append(f"**{line}**")
else:
break
elif company_count <= 3 and len(work_lines) < 10: # Limit total lines
work_lines.append(line)
work_experience = "\n• " + "\n• ".join(work_lines[:7]) if work_lines else "Work experience not clearly structured"
skills_formatted = "\n• " + "\n• ".join(found_skills) if found_skills else "No specific technical skills clearly identified"
return skills_formatted, work_experience
#####################################
# Function: Summarize Resume Text - Optimized
#####################################
def summarize_resume_text(resume_text):
"""
Generates a structured summary of the resume text - optimized for speed
"""
start_time = time.time()
# First, generate a quick summary using pre-loaded model
max_input_length = 1024 # Model limit
# Only summarize the first portion of text for speed
text_to_summarize = resume_text[:min(len(resume_text), max_input_length)]
base_summary = models['summarizer'](text_to_summarize)[0]['summary_text']
# Extract information in parallel where possible
with concurrent.futures.ThreadPoolExecutor() as executor:
# These can run in parallel
name_future = executor.submit(extract_name, resume_text[:500]) # Only use start of text
age_future = executor.submit(extract_age, resume_text)
industry_future = executor.submit(extract_industry, resume_text, base_summary)
skills_work_future = executor.submit(extract_skills_and_work, resume_text)
# Get results
name = name_future.result()
age = age_future.result()
industry = industry_future.result()
skills, work_experience = skills_work_future.result()
# Format the structured summary
formatted_summary = f"Name: {name}\n"
formatted_summary += f"Age: {age}\n"
formatted_summary += f"Expected Job Industry: {industry}\n\n"
formatted_summary += f"Previous Work Experience: {work_experience}\n\n"
formatted_summary += f"Skills: {skills}"
execution_time = time.time() - start_time
return formatted_summary, execution_time
#####################################
# Function: Evaluate Google Fit with TinyLlama
#####################################
@st.cache_data(show_spinner=False)
def evaluate_google_fit(candidate_summary, _evaluator=None):
"""
Use TinyLlama to evaluate how well the candidate matches with Google's requirements.
"""
start_time = time.time()
evaluator = _evaluator or models['evaluator']
# Format the chat prompt for TinyLlama's chat format
prompt = f"""<|im_start|>system
You are an expert technical recruiter at Google. Your task is to evaluate how well a candidate's profile matches with Google's hiring requirements. Be focused and specific in your evaluation.
<|im_end|>
<|im_start|>user
I need to evaluate if this candidate is a good fit for Google. Please:
1. Score the candidate's fit for Google from 0-100
2. Write a brief evaluation (2-3 sentences) explaining why they would or wouldn't be a good fit
3. Mention 1-2 specific strengths relevant to Google
4. Mention 1 specific area where they might need improvement to better fit Google's requirements
Candidate Profile:
{candidate_summary}
Google's Requirements:
{GOOGLE_DESCRIPTION}
<|im_end|>
<|im_start|>assistant
"""
# Generate the response
response = evaluator(prompt)[0]['generated_text']
# Extract just the assistant's response after the prompt
assistant_response_start = response.find("<|im_start|>assistant") + len("<|im_start|>assistant")
assistant_response = response[assistant_response_start:].strip()
# Remove any trailing tag if present
if "<|im_end|>" in assistant_response:
assistant_response = assistant_response.split("<|im_end|>")[0].strip()
# Try to extract the score from the response
score_match = re.search(r'(\d{1,3})/100|score:?\s*(\d{1,3})|rating:?\s*(\d{1,3})|suitability:?\s*(\d{1,3})',
assistant_response.lower())
if score_match:
# Find the first group that matched and isn't None
for group in score_match.groups():
if group is not None:
score = int(group)
normalized_score = min(100, max(0, score)) / 100 # Ensure it's in 0-1 range
break
else:
normalized_score = 0.5 # Default if no group was extracted
else:
# If no explicit score, try to infer from sentiments
positive_words = ['excellent', 'perfect', 'outstanding', 'ideal', 'great', 'strong']
negative_words = ['poor', 'inadequate', 'insufficient', 'lacks', 'mismatch', 'weak']
positive_count = sum(assistant_response.lower().count(word) for word in positive_words)
negative_count = sum(assistant_response.lower().count(word) for word in negative_words)
if positive_count > negative_count * 2:
normalized_score = 0.85
elif positive_count > negative_count:
normalized_score = 0.7
elif negative_count > positive_count * 2:
normalized_score = 0.3
elif negative_count > positive_count:
normalized_score = 0.4
else:
normalized_score = 0.5
execution_time = time.time() - start_time
return normalized_score, assistant_response, execution_time
#####################################
# Main Streamlit Interface - with Progress Reporting
#####################################
st.title("Google Resume Match Analyzer")
st.markdown(
"""
Upload your resume file in **.docx**, **.doc**, or **.txt** format to see how well you match with Google's hiring requirements. The app performs the following tasks:
1. Extracts text from your resume.
2. Uses AI to generate a structured candidate summary.
3. Evaluates your fit for Google, providing a match score and specific feedback.
"""
)
# Display Google's requirements
with st.expander("Google's Requirements", expanded=False):
st.write(GOOGLE_DESCRIPTION)
# File uploader
uploaded_file = st.file_uploader("Upload your resume (.docx, .doc, or .txt)", type=["docx", "doc", "txt"])
# Process button with optimized flow
if uploaded_file is not None and st.button("Analyze My Google Fit"):
# Create a placeholder for the progress bar
progress_bar = st.progress(0)
status_text = st.empty()
# Step 1: Extract text
status_text.text("Step 1/3: Extracting text from resume...")
resume_text = extract_text_from_file(uploaded_file)
progress_bar.progress(25)
if resume_text.startswith("Error") or resume_text == "Unsupported file type. Please upload a .docx, .doc, or .txt file.":
st.error(resume_text)
else:
# Step 2: Generate summary
status_text.text("Step 2/3: Analyzing resume and generating summary...")
summary, summarization_time = summarize_resume_text(resume_text)
progress_bar.progress(75)
# Display summary
st.subheader("Your Resume Summary")
st.markdown(summary)
st.info(f"Summary generated in {summarization_time:.2f} seconds")
# Step 3: Evaluate Google fit
status_text.text("Step 3/3: Evaluating your fit for Google...")
fit_score, evaluation, evaluation_time = evaluate_google_fit(
summary, _evaluator=models['evaluator']
)
progress_bar.progress(100)
# Clear status messages
status_text.empty()
# Display Google fit results
st.subheader("Google Fit Assessment")
# Display score with appropriate color and emoji
score_percent = int(fit_score * 100)
if fit_score >= 0.85:
st.success(f"**Google Match Score:** {score_percent}% 🌟")
elif fit_score >= 0.70:
st.success(f"**Google Match Score:** {score_percent}% ✅")
elif fit_score >= 0.50:
st.warning(f"**Google Match Score:** {score_percent}% ⚠️")
else:
st.error(f"**Google Match Score:** {score_percent}% 🔍")
# Display the full evaluation
st.markdown("### Feedback from Google AI Recruiter")
st.markdown(evaluation)
st.info(f"Evaluation completed in {evaluation_time:.2f} seconds")
# Add potential next steps based on the score
st.subheader("Recommended Next Steps")
if fit_score >= 0.80:
st.markdown("""
- Consider applying for positions at Google that match your experience
- Prepare for technical interviews by practicing algorithms and system design
- Review Google's interview process and STAR method for behavioral questions
""")
elif fit_score >= 0.60:
st.markdown("""
- Focus on strengthening the improvement areas mentioned in the evaluation
- Work on projects that demonstrate your skills in Google's key technology areas
- Consider taking additional courses in areas where Google has shown interest
""")
else:
st.markdown("""
- Build experience in areas matching Google's requirements
- Develop projects showcasing problem-solving abilities and technical skills
- Consider gaining more experience before applying, or target specific Google roles that better match your profile
""") |