Spaces:
Sleeping
Sleeping
File size: 20,414 Bytes
cf8a522 4077883 8e1d297 92f45fe 2e98a93 501c91b e0405b6 1a0f22c d2d6501 5d07781 8e1d297 501c91b c6d228e d2d6501 5d07781 501c91b d2d6501 501c91b 86037f3 e0405b6 501c91b 601e2aa e0405b6 d2d6501 c6d228e 501c91b 8e1d297 501c91b 92f45fe 2e98a93 7716c5c 92f45fe 501c91b 92f45fe 7716c5c 9753cc9 501c91b c6d228e 9753cc9 92f45fe cf98c48 92f45fe cf98c48 d8bcf0c 2e98a93 92f45fe 2e98a93 92f45fe 8e1d297 1a0f22c d204788 8e1d297 501c91b 7716c5c c6d228e d836318 2e98a93 d204788 d836318 e0405b6 c6d228e d2d6501 1a0f22c e0405b6 c6d228e 501c91b 1a0f22c 501c91b 1a0f22c 501c91b 1a0f22c 2e98a93 1a0f22c d204788 2e98a93 1a0f22c d204788 1a0f22c 0d4f4dd e0405b6 2e98a93 d836318 cccaa8e 501c91b cccaa8e 501c91b cccaa8e 501c91b cccaa8e e0405b6 501c91b c6d228e 501c91b 41d8604 501c91b 41d8604 501c91b e0405b6 501c91b cccaa8e 7716c5c e0405b6 8e1d297 d2d6501 cc18787 2e98a93 d2d6501 d204788 501c91b d2d6501 cccaa8e e0405b6 2e98a93 d2d6501 e0405b6 3661e7e e0405b6 501c91b e0405b6 2e98a93 e0405b6 d2d6501 e0405b6 2e98a93 e0405b6 501c91b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 |
import os
import io
import streamlit as st
import docx
import docx2txt
import tempfile
from transformers import pipeline
import numpy as np
from scipy.spatial.distance import cosine
import time
import re
# Set page title and hide sidebar
st.set_page_config(
page_title="Resume Analyzer and Company Suitability Checker",
initial_sidebar_state="collapsed"
)
# Hide sidebar completely with custom CSS
st.markdown("""
<style>
[data-testid="collapsedControl"] {display: none;}
section[data-testid="stSidebar"] {display: none;}
</style>
""", unsafe_allow_html=True)
#####################################
# Preload Models
#####################################
@st.cache_resource(show_spinner=True)
def load_models():
"""Load models at startup"""
with st.spinner("Loading AI models... This may take a minute on first run."):
models = {}
# Load summarization model
models['summarizer'] = pipeline("summarization", model="t5-base")
# Load feature extraction model for similarity
models['feature_extractor'] = pipeline("feature-extraction", model="bert-base-uncased")
return models
# Preload models immediately when app starts
models = load_models()
#####################################
# Function: Extract Text from File
#####################################
def extract_text_from_file(file_obj):
"""
Extract text from .docx and .doc files.
Returns the extracted text or an error message if extraction fails.
"""
filename = file_obj.name
ext = os.path.splitext(filename)[1].lower()
text = ""
if ext == ".docx":
try:
document = docx.Document(file_obj)
text = "\n".join(para.text for para in document.paragraphs if para.text.strip())
except Exception as e:
text = f"Error processing DOCX file: {e}"
elif ext == ".doc":
try:
# For .doc files, we need to save to a temp file
with tempfile.NamedTemporaryFile(delete=False, suffix='.doc') as temp_file:
temp_file.write(file_obj.getvalue())
temp_path = temp_file.name
# Use docx2txt which is generally faster
try:
text = docx2txt.process(temp_path)
except Exception:
text = "Could not process .doc file. Please convert to .docx format."
# Clean up temp file
os.unlink(temp_path)
except Exception as e:
text = f"Error processing DOC file: {e}"
elif ext == ".txt":
try:
text = file_obj.getvalue().decode("utf-8")
except Exception as e:
text = f"Error processing TXT file: {e}"
else:
text = "Unsupported file type. Please upload a .docx, .doc, or .txt file."
return text
#####################################
# Functions for Information Extraction
#####################################
def extract_name(text):
"""Extract candidate name from resume text"""
# Look for common name patterns at the beginning of resumes
lines = text.split('\n')
# Check first few non-empty lines for potential names
potential_name_lines = [line.strip() for line in lines[:5] if line.strip()]
if potential_name_lines:
# First line is often the name if it's short and doesn't contain common resume headers
first_line = potential_name_lines[0]
if 5 <= len(first_line) <= 40 and not any(x in first_line.lower() for x in ["resume", "cv", "curriculum", "vitae", "profile"]):
return first_line
# Look for lines that might contain a name (not containing common keywords)
for line in potential_name_lines[:3]:
if len(line.split()) <= 4 and not any(x in line.lower() for x in ["address", "phone", "email", "resume", "cv"]):
return line
# If we couldn't find a clear name
return "Unknown (please extract from resume)"
def extract_age(text):
"""Extract candidate age from resume text"""
# Look for common age patterns
# Look for patterns like "Age: XX" or "XX years old"
age_patterns = [
r'age:?\s*(\d{1,2})',
r'(\d{1,2})\s*years\s*old',
r'DOB:?\s*(\d{1,2})[/-](\d{1,2})[/-](\d{2,4})'
]
for pattern in age_patterns:
matches = re.search(pattern, text.lower())
if matches:
if pattern == age_patterns[2]: # DOB pattern
# Calculate age from DOB - simplified
return "Mentioned in DOB format"
else:
return matches.group(1)
return "Not specified"
def extract_industry(text, summary):
"""Extract expected job industry from resume"""
# Look for industry-related keywords
industry_keywords = {
"technology": ["software", "programming", "developer", "IT", "tech", "computer", "web", "data science"],
"finance": ["banking", "investment", "financial", "accounting", "finance", "analyst"],
"healthcare": ["medical", "health", "hospital", "clinical", "nurse", "doctor", "patient"],
"education": ["teaching", "teacher", "professor", "academic", "education", "school", "university"],
"marketing": ["marketing", "advertising", "brand", "digital marketing", "SEO", "social media"],
"engineering": ["mechanical", "civil", "electrical", "engineer", "engineering"],
"consulting": ["consultant", "consulting", "advisory"],
"data science": ["data science", "machine learning", "AI", "analytics", "big data"],
"information systems": ["information systems", "ERP", "CRM", "database", "systems management"]
}
# Count occurrences of industry keywords
counts = {}
text_lower = text.lower()
for industry, keywords in industry_keywords.items():
counts[industry] = sum(text_lower.count(keyword.lower()) for keyword in keywords)
# Get the industry with the highest count
if counts:
likely_industry = max(counts.items(), key=lambda x: x[1])
if likely_industry[1] > 0:
return likely_industry[0].capitalize()
# Check for educational background that might indicate industry
degrees = ["computer science", "business", "engineering", "medicine", "law", "education",
"finance", "marketing", "information systems"]
for degree in degrees:
if degree in text_lower:
return f"{degree.capitalize()}-related field"
return "Not clearly specified (review resume for details)"
def extract_skills(text, summary):
"""Extract key skills from resume"""
# Common skill categories and associated keywords
skill_categories = {
"Programming": ["Python", "Java", "C++", "JavaScript", "HTML", "CSS", "SQL", "R", "C#", "PHP",
"Ruby", "Swift", "TypeScript", "Go", "Scala", "Kotlin", "Rust"],
"Data Science": ["Machine Learning", "Deep Learning", "NLP", "Data Analysis", "Statistics",
"Big Data", "Data Visualization", "TensorFlow", "PyTorch", "Neural Networks",
"Regression", "Classification", "Clustering"],
"Database": ["SQL", "MySQL", "PostgreSQL", "MongoDB", "Oracle", "SQLite", "NoSQL", "Database Design",
"Data Modeling", "ETL", "Data Warehousing"],
"Web Development": ["React", "Angular", "Vue.js", "Node.js", "Django", "Flask", "Express", "RESTful API",
"Frontend", "Backend", "Full-Stack", "Responsive Design"],
"Software Development": ["Agile", "Scrum", "Kanban", "Git", "CI/CD", "TDD", "OOP", "Design Patterns",
"Microservices", "DevOps", "Docker", "Kubernetes"],
"Cloud": ["AWS", "Azure", "Google Cloud", "Cloud Computing", "S3", "EC2", "Lambda", "Serverless",
"Cloud Architecture", "IaaS", "PaaS", "SaaS"],
"Business": ["Project Management", "Business Analysis", "Communication", "Teamwork", "Leadership",
"Strategy", "Negotiation", "Presentation", "Time Management"],
"Tools": ["Excel", "PowerPoint", "Tableau", "Power BI", "JIRA", "Confluence", "Slack", "Microsoft Office",
"Adobe", "Photoshop", "Salesforce"]
}
# Find skills mentioned in the resume
found_skills = []
text_lower = text.lower()
for category, skills in skill_categories.items():
category_skills = []
for skill in skills:
# Check for case-insensitive match but preserve original case in output
if skill.lower() in text_lower:
category_skills.append(skill)
if category_skills:
found_skills.append(f"{category}: {', '.join(category_skills)}")
if found_skills:
return "\n• " + "\n• ".join(found_skills)
else:
return "No specific technical skills clearly identified (review resume for details)"
def extract_work_experience(text):
"""Extract work experience from resume"""
# Common section headers for work experience
work_headers = [
"work experience", "professional experience", "employment history",
"work history", "experience", "professional background", "career history"
]
# Common section headers that might come after work experience
next_section_headers = [
"education", "skills", "certifications", "projects", "achievements",
"languages", "interests", "references", "additional information"
]
text_lower = text.lower()
lines = text.split('\n')
# Find the start of work experience section
work_start_idx = -1
work_header_used = ""
for idx, line in enumerate(lines):
line_lower = line.lower().strip()
if any(header in line_lower for header in work_headers):
if any(header == line_lower or header + ":" == line_lower for header in work_headers):
work_start_idx = idx
work_header_used = line.strip()
break
if work_start_idx == -1:
# Try to find work experience by looking for date patterns (common in resumes)
date_pattern = r'(19|20)\d{2}\s*(-|–|to)\s*(19|20)\d{2}|present|current|now'
for idx, line in enumerate(lines):
if re.search(date_pattern, line.lower()):
# Check surrounding lines for job titles or company names
context = " ".join(lines[max(0, idx-2):min(len(lines), idx+3)])
if any(title.lower() in context.lower() for title in ["manager", "developer", "engineer", "analyst", "assistant", "director", "coordinator"]):
work_start_idx = max(0, idx-2)
break
if work_start_idx == -1:
return "No clear work experience section found"
# Find the end of work experience section
work_end_idx = len(lines)
for idx in range(work_start_idx + 1, len(lines)):
line_lower = lines[idx].lower().strip()
if any(header in line_lower for header in next_section_headers):
if any(header == line_lower or header + ":" == line_lower for header in next_section_headers):
work_end_idx = idx
break
# Extract the work experience section
work_section = lines[work_start_idx + 1:work_end_idx]
# Process the work experience to make it more concise
# Look for companies, positions, dates, and key responsibilities
companies = []
current_company = {"name": "", "position": "", "dates": "", "description": []}
for line in work_section:
line = line.strip()
if not line:
continue
# Check if this is likely a new company/position entry
if re.search(r'(19|20)\d{2}\s*(-|–|to)\s*(19|20)\d{2}|present|current|now', line.lower()):
# Save previous company if it exists
if current_company["name"] or current_company["position"]:
companies.append(current_company)
current_company = {"name": "", "position": "", "dates": "", "description": []}
# This line likely contains position/company and dates
current_company["dates"] = line
# Try to extract position and company
parts = re.split(r'(19|20)\d{2}', line, 1)
if len(parts) > 1:
current_company["position"] = parts[0].strip()
elif current_company["dates"] and not current_company["name"]:
# This line might be the company name or the continuation of position details
current_company["name"] = line
else:
# This is likely a responsibility or detail
current_company["description"].append(line)
# Add the last company if it exists
if current_company["name"] or current_company["position"]:
companies.append(current_company)
# Format the work experience
if not companies:
# Try a different approach - just extract text blocks that might be jobs
job_blocks = []
current_block = []
for line in work_section:
line = line.strip()
if not line:
if current_block:
job_blocks.append(" ".join(current_block))
current_block = []
else:
current_block.append(line)
if current_block:
job_blocks.append(" ".join(current_block))
if job_blocks:
return "\n• " + "\n• ".join(job_blocks[:3]) # Limit to top 3 entries
else:
return "Work experience information could not be clearly structured"
# Format the companies into a readable output
formatted_experience = []
for company in companies[:3]: # Limit to top 3 most recent positions
entry = []
if company["position"]:
entry.append(f"**{company['position']}**")
if company["name"]:
entry.append(f"at {company['name']}")
if company["dates"]:
entry.append(f"({company['dates']})")
position_line = " ".join(entry)
if company["description"]:
# Limit to first 2-3 bullet points for conciseness
description = company["description"][:3]
description_text = "; ".join(description)
formatted_experience.append(f"{position_line} - {description_text}")
else:
formatted_experience.append(position_line)
if formatted_experience:
return "\n• " + "\n• ".join(formatted_experience)
else:
return "Work experience information could not be clearly structured"
#####################################
# Function: Summarize Resume Text
#####################################
def summarize_resume_text(resume_text, models):
"""
Generates a structured summary of the resume text including name, age,
expected job industry, skills, and work experience of the candidate.
"""
start_time = time.time()
summarizer = models['summarizer']
# First, generate a general summary
max_input_length = 1024 # Model limit
if len(resume_text) > max_input_length:
chunks = [resume_text[i:i+max_input_length] for i in range(0, min(len(resume_text), 3*max_input_length), max_input_length)]
summaries = []
for chunk in chunks:
chunk_summary = summarizer(chunk, max_length=150, min_length=30, do_sample=False)[0]['summary_text']
summaries.append(chunk_summary)
base_summary = " ".join(summaries)
else:
base_summary = summarizer(resume_text, max_length=150, min_length=30, do_sample=False)[0]['summary_text']
# Extract specific information using custom extraction logic
name = extract_name(resume_text)
age = extract_age(resume_text)
industry = extract_industry(resume_text, base_summary)
skills = extract_skills(resume_text, base_summary)
work_experience = extract_work_experience(resume_text)
# Format the structured summary
formatted_summary = f"Name: {name}\n"
formatted_summary += f"Age: {age}\n"
formatted_summary += f"Expected Job Industry: {industry}\n\n"
formatted_summary += f"Previous Work Experience: {work_experience}\n\n"
formatted_summary += f"Skills: {skills}"
execution_time = time.time() - start_time
return formatted_summary, execution_time
#####################################
# Function: Compare Candidate Summary to Company Prompt
#####################################
def compute_suitability(candidate_summary, company_prompt, models):
"""
Compute the similarity between candidate summary and company prompt.
Returns a score in the range [0, 1] and execution time.
"""
start_time = time.time()
feature_extractor = models['feature_extractor']
# Extract features (embeddings)
candidate_features = feature_extractor(candidate_summary)
company_features = feature_extractor(company_prompt)
# Convert to numpy arrays and flatten if needed
candidate_vec = np.mean(np.array(candidate_features[0]), axis=0)
company_vec = np.mean(np.array(company_features[0]), axis=0)
# Compute cosine similarity (1 - cosine distance)
similarity = 1 - cosine(candidate_vec, company_vec)
execution_time = time.time() - start_time
return similarity, execution_time
#####################################
# Main Streamlit Interface
#####################################
st.title("Resume Analyzer and Company Suitability Checker")
st.markdown(
"""
Upload your resume file in **.docx**, **.doc**, or **.txt** format. The app performs the following tasks:
1. Extracts text from the resume.
2. Uses AI to generate a structured candidate summary with name, age, expected job industry, previous work experience, and skills.
3. Compares the candidate summary with a company profile to produce a suitability score.
"""
)
# File uploader
uploaded_file = st.file_uploader("Upload your resume (.docx, .doc, or .txt)", type=["docx", "doc", "txt"])
# Company description text area
company_prompt = st.text_area(
"Enter the company description or job requirements:",
height=150,
help="Enter a detailed description of the company culture, role requirements, and desired skills.",
)
# Process button
if uploaded_file is not None and company_prompt and st.button("Analyze Resume"):
with st.spinner("Processing..."):
# Extract text from resume
resume_text = extract_text_from_file(uploaded_file)
if resume_text.startswith("Error") or resume_text == "Unsupported file type. Please upload a .docx, .doc, or .txt file.":
st.error(resume_text)
else:
# Generate summary
summary, summarization_time = summarize_resume_text(resume_text, models)
# Display summary
st.subheader("Candidate Summary")
st.markdown(summary)
st.info(f"Summarization completed in {summarization_time:.2f} seconds")
# Only compute similarity if company description is provided
if company_prompt:
similarity_score, similarity_time = compute_suitability(summary, company_prompt, models)
# Display similarity score
st.subheader("Suitability Assessment")
st.markdown(f"**Matching Score:** {similarity_score:.2%}")
st.info(f"Similarity computation completed in {similarity_time:.2f} seconds")
# Provide interpretation
if similarity_score >= 0.85:
st.success("Excellent match! This candidate's profile is strongly aligned with the company requirements.")
elif similarity_score >= 0.70:
st.success("Good match! This candidate shows strong potential for the position.")
elif similarity_score >= 0.50:
st.warning("Moderate match. The candidate meets some requirements but there may be gaps.")
else:
st.error("Low match. The candidate's profile may not align well with the requirements.") |