File size: 20,414 Bytes
cf8a522
4077883
8e1d297
92f45fe
2e98a93
 
501c91b
 
 
e0405b6
1a0f22c
d2d6501
5d07781
 
 
 
 
 
 
 
 
 
 
 
 
8e1d297
 
501c91b
c6d228e
d2d6501
5d07781
501c91b
d2d6501
 
501c91b
86037f3
e0405b6
501c91b
601e2aa
e0405b6
d2d6501
 
 
 
c6d228e
 
501c91b
8e1d297
501c91b
92f45fe
2e98a93
7716c5c
92f45fe
501c91b
 
92f45fe
7716c5c
 
9753cc9
501c91b
c6d228e
9753cc9
92f45fe
cf98c48
92f45fe
cf98c48
 
 
 
 
 
 
 
 
 
 
 
 
d8bcf0c
 
2e98a93
 
 
 
 
92f45fe
2e98a93
92f45fe
8e1d297
1a0f22c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d204788
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e1d297
501c91b
7716c5c
c6d228e
d836318
2e98a93
d204788
d836318
e0405b6
 
c6d228e
d2d6501
1a0f22c
e0405b6
c6d228e
501c91b
 
 
 
 
1a0f22c
501c91b
 
1a0f22c
501c91b
1a0f22c
2e98a93
1a0f22c
 
 
 
 
d204788
2e98a93
1a0f22c
 
 
d204788
 
1a0f22c
0d4f4dd
e0405b6
 
2e98a93
d836318
cccaa8e
501c91b
cccaa8e
501c91b
cccaa8e
501c91b
 
cccaa8e
e0405b6
 
501c91b
c6d228e
501c91b
 
 
41d8604
501c91b
 
 
41d8604
501c91b
 
e0405b6
 
 
501c91b
cccaa8e
7716c5c
e0405b6
8e1d297
d2d6501
 
cc18787
2e98a93
d2d6501
d204788
501c91b
d2d6501
 
cccaa8e
e0405b6
2e98a93
d2d6501
e0405b6
 
 
 
 
 
3661e7e
e0405b6
 
 
501c91b
 
e0405b6
2e98a93
e0405b6
d2d6501
e0405b6
 
 
 
 
2e98a93
e0405b6
 
501c91b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
import os
import io
import streamlit as st
import docx
import docx2txt
import tempfile
from transformers import pipeline
import numpy as np
from scipy.spatial.distance import cosine
import time
import re

# Set page title and hide sidebar
st.set_page_config(
    page_title="Resume Analyzer and Company Suitability Checker",
    initial_sidebar_state="collapsed"
)

# Hide sidebar completely with custom CSS
st.markdown("""
<style>
    [data-testid="collapsedControl"] {display: none;}
    section[data-testid="stSidebar"] {display: none;}
</style>
""", unsafe_allow_html=True)

#####################################
# Preload Models
#####################################
@st.cache_resource(show_spinner=True)
def load_models():
    """Load models at startup"""
    with st.spinner("Loading AI models... This may take a minute on first run."):
        models = {}
        # Load summarization model
        models['summarizer'] = pipeline("summarization", model="t5-base")
        
        # Load feature extraction model for similarity
        models['feature_extractor'] = pipeline("feature-extraction", model="bert-base-uncased")
        
        return models

# Preload models immediately when app starts
models = load_models()

#####################################
# Function: Extract Text from File
#####################################
def extract_text_from_file(file_obj):
    """
    Extract text from .docx and .doc files.
    Returns the extracted text or an error message if extraction fails.
    """
    filename = file_obj.name
    ext = os.path.splitext(filename)[1].lower()
    text = ""

    if ext == ".docx":
        try:
            document = docx.Document(file_obj)
            text = "\n".join(para.text for para in document.paragraphs if para.text.strip())
        except Exception as e:
            text = f"Error processing DOCX file: {e}"
    elif ext == ".doc":
        try:
            # For .doc files, we need to save to a temp file
            with tempfile.NamedTemporaryFile(delete=False, suffix='.doc') as temp_file:
                temp_file.write(file_obj.getvalue())
                temp_path = temp_file.name
        
            # Use docx2txt which is generally faster
            try:
                text = docx2txt.process(temp_path)
            except Exception:
                text = "Could not process .doc file. Please convert to .docx format."
        
            # Clean up temp file
            os.unlink(temp_path)
        except Exception as e:
            text = f"Error processing DOC file: {e}"
    elif ext == ".txt":
        try:
            text = file_obj.getvalue().decode("utf-8")
        except Exception as e:
            text = f"Error processing TXT file: {e}"
    else:
        text = "Unsupported file type. Please upload a .docx, .doc, or .txt file."
    return text

#####################################
# Functions for Information Extraction
#####################################
def extract_name(text):
    """Extract candidate name from resume text"""
    # Look for common name patterns at the beginning of resumes
    lines = text.split('\n')
    
    # Check first few non-empty lines for potential names
    potential_name_lines = [line.strip() for line in lines[:5] if line.strip()]
    
    if potential_name_lines:
        # First line is often the name if it's short and doesn't contain common resume headers
        first_line = potential_name_lines[0]
        if 5 <= len(first_line) <= 40 and not any(x in first_line.lower() for x in ["resume", "cv", "curriculum", "vitae", "profile"]):
            return first_line
    
    # Look for lines that might contain a name (not containing common keywords)
    for line in potential_name_lines[:3]:
        if len(line.split()) <= 4 and not any(x in line.lower() for x in ["address", "phone", "email", "resume", "cv"]):
            return line

    # If we couldn't find a clear name
    return "Unknown (please extract from resume)"

def extract_age(text):
    """Extract candidate age from resume text"""
    # Look for common age patterns
    
    # Look for patterns like "Age: XX" or "XX years old"
    age_patterns = [
        r'age:?\s*(\d{1,2})',
        r'(\d{1,2})\s*years\s*old',
        r'DOB:?\s*(\d{1,2})[/-](\d{1,2})[/-](\d{2,4})'
    ]
    
    for pattern in age_patterns:
        matches = re.search(pattern, text.lower())
        if matches:
            if pattern == age_patterns[2]:  # DOB pattern
                # Calculate age from DOB - simplified
                return "Mentioned in DOB format"
            else:
                return matches.group(1)
    
    return "Not specified"

def extract_industry(text, summary):
    """Extract expected job industry from resume"""
    # Look for industry-related keywords
    industry_keywords = {
        "technology": ["software", "programming", "developer", "IT", "tech", "computer", "web", "data science"],
        "finance": ["banking", "investment", "financial", "accounting", "finance", "analyst"],
        "healthcare": ["medical", "health", "hospital", "clinical", "nurse", "doctor", "patient"],
        "education": ["teaching", "teacher", "professor", "academic", "education", "school", "university"],
        "marketing": ["marketing", "advertising", "brand", "digital marketing", "SEO", "social media"],
        "engineering": ["mechanical", "civil", "electrical", "engineer", "engineering"],
        "consulting": ["consultant", "consulting", "advisory"],
        "data science": ["data science", "machine learning", "AI", "analytics", "big data"],
        "information systems": ["information systems", "ERP", "CRM", "database", "systems management"]
    }
    
    # Count occurrences of industry keywords
    counts = {}
    text_lower = text.lower()
    
    for industry, keywords in industry_keywords.items():
        counts[industry] = sum(text_lower.count(keyword.lower()) for keyword in keywords)
    
    # Get the industry with the highest count
    if counts:
        likely_industry = max(counts.items(), key=lambda x: x[1])
        if likely_industry[1] > 0:
            return likely_industry[0].capitalize()
    
    # Check for educational background that might indicate industry
    degrees = ["computer science", "business", "engineering", "medicine", "law", "education", 
              "finance", "marketing", "information systems"]
    
    for degree in degrees:
        if degree in text_lower:
            return f"{degree.capitalize()}-related field"
    
    return "Not clearly specified (review resume for details)"

def extract_skills(text, summary):
    """Extract key skills from resume"""
    # Common skill categories and associated keywords
    skill_categories = {
        "Programming": ["Python", "Java", "C++", "JavaScript", "HTML", "CSS", "SQL", "R", "C#", "PHP", 
                       "Ruby", "Swift", "TypeScript", "Go", "Scala", "Kotlin", "Rust"],
        "Data Science": ["Machine Learning", "Deep Learning", "NLP", "Data Analysis", "Statistics", 
                         "Big Data", "Data Visualization", "TensorFlow", "PyTorch", "Neural Networks", 
                         "Regression", "Classification", "Clustering"],
        "Database": ["SQL", "MySQL", "PostgreSQL", "MongoDB", "Oracle", "SQLite", "NoSQL", "Database Design", 
                    "Data Modeling", "ETL", "Data Warehousing"],
        "Web Development": ["React", "Angular", "Vue.js", "Node.js", "Django", "Flask", "Express", "RESTful API", 
                           "Frontend", "Backend", "Full-Stack", "Responsive Design"],
        "Software Development": ["Agile", "Scrum", "Kanban", "Git", "CI/CD", "TDD", "OOP", "Design Patterns", 
                                "Microservices", "DevOps", "Docker", "Kubernetes"],
        "Cloud": ["AWS", "Azure", "Google Cloud", "Cloud Computing", "S3", "EC2", "Lambda", "Serverless", 
                 "Cloud Architecture", "IaaS", "PaaS", "SaaS"],
        "Business": ["Project Management", "Business Analysis", "Communication", "Teamwork", "Leadership", 
                    "Strategy", "Negotiation", "Presentation", "Time Management"],
        "Tools": ["Excel", "PowerPoint", "Tableau", "Power BI", "JIRA", "Confluence", "Slack", "Microsoft Office", 
                 "Adobe", "Photoshop", "Salesforce"]
    }
    
    # Find skills mentioned in the resume
    found_skills = []
    text_lower = text.lower()
    
    for category, skills in skill_categories.items():
        category_skills = []
        for skill in skills:
            # Check for case-insensitive match but preserve original case in output
            if skill.lower() in text_lower:
                category_skills.append(skill)
        
        if category_skills:
            found_skills.append(f"{category}: {', '.join(category_skills)}")
    
    if found_skills:
        return "\n• " + "\n• ".join(found_skills)
    else:
        return "No specific technical skills clearly identified (review resume for details)"

def extract_work_experience(text):
    """Extract work experience from resume"""
    # Common section headers for work experience
    work_headers = [
        "work experience", "professional experience", "employment history", 
        "work history", "experience", "professional background", "career history"
    ]
    
    # Common section headers that might come after work experience
    next_section_headers = [
        "education", "skills", "certifications", "projects", "achievements",
        "languages", "interests", "references", "additional information"
    ]
    
    text_lower = text.lower()
    lines = text.split('\n')
    
    # Find the start of work experience section
    work_start_idx = -1
    work_header_used = ""
    
    for idx, line in enumerate(lines):
        line_lower = line.lower().strip()
        if any(header in line_lower for header in work_headers):
            if any(header == line_lower or header + ":" == line_lower for header in work_headers):
                work_start_idx = idx
                work_header_used = line.strip()
                break
    
    if work_start_idx == -1:
        # Try to find work experience by looking for date patterns (common in resumes)
        date_pattern = r'(19|20)\d{2}\s*(-|–|to)\s*(19|20)\d{2}|present|current|now'
        for idx, line in enumerate(lines):
            if re.search(date_pattern, line.lower()):
                # Check surrounding lines for job titles or company names
                context = " ".join(lines[max(0, idx-2):min(len(lines), idx+3)])
                if any(title.lower() in context.lower() for title in ["manager", "developer", "engineer", "analyst", "assistant", "director", "coordinator"]):
                    work_start_idx = max(0, idx-2)
                    break
    
    if work_start_idx == -1:
        return "No clear work experience section found"
    
    # Find the end of work experience section
    work_end_idx = len(lines)
    for idx in range(work_start_idx + 1, len(lines)):
        line_lower = lines[idx].lower().strip()
        if any(header in line_lower for header in next_section_headers):
            if any(header == line_lower or header + ":" == line_lower for header in next_section_headers):
                work_end_idx = idx
                break
    
    # Extract the work experience section
    work_section = lines[work_start_idx + 1:work_end_idx]
    
    # Process the work experience to make it more concise
    # Look for companies, positions, dates, and key responsibilities
    companies = []
    current_company = {"name": "", "position": "", "dates": "", "description": []}
    
    for line in work_section:
        line = line.strip()
        if not line:
            continue
            
        # Check if this is likely a new company/position entry
        if re.search(r'(19|20)\d{2}\s*(-|–|to)\s*(19|20)\d{2}|present|current|now', line.lower()):
            # Save previous company if it exists
            if current_company["name"] or current_company["position"]:
                companies.append(current_company)
                current_company = {"name": "", "position": "", "dates": "", "description": []}
            
            # This line likely contains position/company and dates
            current_company["dates"] = line
            
            # Try to extract position and company
            parts = re.split(r'(19|20)\d{2}', line, 1)
            if len(parts) > 1:
                current_company["position"] = parts[0].strip()
        elif current_company["dates"] and not current_company["name"]:
            # This line might be the company name or the continuation of position details
            current_company["name"] = line
        else:
            # This is likely a responsibility or detail
            current_company["description"].append(line)
    
    # Add the last company if it exists
    if current_company["name"] or current_company["position"]:
        companies.append(current_company)
    
    # Format the work experience
    if not companies:
        # Try a different approach - just extract text blocks that might be jobs
        job_blocks = []
        current_block = []
        
        for line in work_section:
            line = line.strip()
            if not line:
                if current_block:
                    job_blocks.append(" ".join(current_block))
                    current_block = []
            else:
                current_block.append(line)
        
        if current_block:
            job_blocks.append(" ".join(current_block))
        
        if job_blocks:
            return "\n• " + "\n• ".join(job_blocks[:3])  # Limit to top 3 entries
        else:
            return "Work experience information could not be clearly structured"
    
    # Format the companies into a readable output
    formatted_experience = []
    for company in companies[:3]:  # Limit to top 3 most recent positions
        entry = []
        if company["position"]:
            entry.append(f"**{company['position']}**")
        if company["name"]:
            entry.append(f"at {company['name']}")
        if company["dates"]:
            entry.append(f"({company['dates']})")
        
        position_line = " ".join(entry)
        
        if company["description"]:
            # Limit to first 2-3 bullet points for conciseness
            description = company["description"][:3]
            description_text = "; ".join(description)
            formatted_experience.append(f"{position_line} - {description_text}")
        else:
            formatted_experience.append(position_line)
    
    if formatted_experience:
        return "\n• " + "\n• ".join(formatted_experience)
    else:
        return "Work experience information could not be clearly structured"

#####################################
# Function: Summarize Resume Text
#####################################
def summarize_resume_text(resume_text, models):
    """
    Generates a structured summary of the resume text including name, age, 
    expected job industry, skills, and work experience of the candidate.
    """
    start_time = time.time()
    
    summarizer = models['summarizer']
    
    # First, generate a general summary
    max_input_length = 1024  # Model limit
    
    if len(resume_text) > max_input_length:
        chunks = [resume_text[i:i+max_input_length] for i in range(0, min(len(resume_text), 3*max_input_length), max_input_length)]
        summaries = []
        
        for chunk in chunks:
            chunk_summary = summarizer(chunk, max_length=150, min_length=30, do_sample=False)[0]['summary_text']
            summaries.append(chunk_summary)
        
        base_summary = " ".join(summaries)
    else:
        base_summary = summarizer(resume_text, max_length=150, min_length=30, do_sample=False)[0]['summary_text']
    
    # Extract specific information using custom extraction logic
    name = extract_name(resume_text)
    age = extract_age(resume_text)
    industry = extract_industry(resume_text, base_summary)
    skills = extract_skills(resume_text, base_summary)
    work_experience = extract_work_experience(resume_text)
    
    # Format the structured summary
    formatted_summary = f"Name: {name}\n"
    formatted_summary += f"Age: {age}\n"
    formatted_summary += f"Expected Job Industry: {industry}\n\n"
    formatted_summary += f"Previous Work Experience: {work_experience}\n\n"
    formatted_summary += f"Skills: {skills}"
    
    execution_time = time.time() - start_time
    
    return formatted_summary, execution_time

#####################################
# Function: Compare Candidate Summary to Company Prompt
#####################################
def compute_suitability(candidate_summary, company_prompt, models):
    """
    Compute the similarity between candidate summary and company prompt.
    Returns a score in the range [0, 1] and execution time.
    """
    start_time = time.time()
    
    feature_extractor = models['feature_extractor']
    
    # Extract features (embeddings)
    candidate_features = feature_extractor(candidate_summary)
    company_features = feature_extractor(company_prompt)
    
    # Convert to numpy arrays and flatten if needed
    candidate_vec = np.mean(np.array(candidate_features[0]), axis=0)
    company_vec = np.mean(np.array(company_features[0]), axis=0)
    
    # Compute cosine similarity (1 - cosine distance)
    similarity = 1 - cosine(candidate_vec, company_vec)
    
    execution_time = time.time() - start_time
    
    return similarity, execution_time

#####################################
# Main Streamlit Interface
#####################################
st.title("Resume Analyzer and Company Suitability Checker")
st.markdown(
    """
Upload your resume file in **.docx**, **.doc**, or **.txt** format. The app performs the following tasks:
1. Extracts text from the resume.
2. Uses AI to generate a structured candidate summary with name, age, expected job industry, previous work experience, and skills.
3. Compares the candidate summary with a company profile to produce a suitability score.
"""
)

# File uploader
uploaded_file = st.file_uploader("Upload your resume (.docx, .doc, or .txt)", type=["docx", "doc", "txt"])

# Company description text area
company_prompt = st.text_area(
    "Enter the company description or job requirements:",
    height=150,
    help="Enter a detailed description of the company culture, role requirements, and desired skills.",
)

# Process button
if uploaded_file is not None and company_prompt and st.button("Analyze Resume"):
    with st.spinner("Processing..."):
        # Extract text from resume
        resume_text = extract_text_from_file(uploaded_file)
        
        if resume_text.startswith("Error") or resume_text == "Unsupported file type. Please upload a .docx, .doc, or .txt file.":
            st.error(resume_text)
        else:
            # Generate summary
            summary, summarization_time = summarize_resume_text(resume_text, models)
            
            # Display summary
            st.subheader("Candidate Summary")
            st.markdown(summary)
            st.info(f"Summarization completed in {summarization_time:.2f} seconds")
            
            # Only compute similarity if company description is provided
            if company_prompt:
                similarity_score, similarity_time = compute_suitability(summary, company_prompt, models)
                
                # Display similarity score
                st.subheader("Suitability Assessment")
                st.markdown(f"**Matching Score:** {similarity_score:.2%}")
                st.info(f"Similarity computation completed in {similarity_time:.2f} seconds")
                
                # Provide interpretation
                if similarity_score >= 0.85:
                    st.success("Excellent match! This candidate's profile is strongly aligned with the company requirements.")
                elif similarity_score >= 0.70:
                    st.success("Good match! This candidate shows strong potential for the position.")
                elif similarity_score >= 0.50:
                    st.warning("Moderate match. The candidate meets some requirements but there may be gaps.")
                else:
                    st.error("Low match. The candidate's profile may not align well with the requirements.")