Spaces:
Sleeping
Sleeping
File size: 8,310 Bytes
cf8a522 92f45fe 8e1d297 92f45fe cc18787 e0405b6 d2d6501 8e1d297 d2d6501 c6d228e d2d6501 e0405b6 d2d6501 e0405b6 d2d6501 c6d228e d2d6501 8e1d297 92f45fe 7716c5c 92f45fe 7716c5c 9753cc9 92f45fe c6d228e 9753cc9 92f45fe c6d228e 92f45fe 8e1d297 d2d6501 7716c5c c6d228e d836318 e0405b6 d836318 e0405b6 c6d228e d2d6501 e0405b6 c6d228e cc18787 d2d6501 c6d228e 0d4f4dd e0405b6 d836318 cccaa8e d2d6501 cccaa8e c6d228e cccaa8e d2d6501 e0405b6 cccaa8e e0405b6 c6d228e e0405b6 c6d228e e0405b6 cccaa8e 7716c5c e0405b6 8e1d297 d2d6501 cc18787 d2d6501 cccaa8e e0405b6 d2d6501 e0405b6 3661e7e e0405b6 3661e7e e0405b6 d2d6501 e0405b6 d2d6501 e0405b6 d2d6501 e0405b6 d2d6501 e0405b6 c6d228e e0405b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
import os
import tempfile
import streamlit as st
import docx
import textract
from transformers import pipeline
import numpy as np
from scipy.spatial.distance import cosine
import time
# Set page title
st.set_page_config(page_title="Resume Analyzer and Company Suitability Checker")
#####################################
# Preload Models
#####################################
@st.cache_resource(show_spinner=True)
def load_models(summarization_model="google/pegasus-xsum", similarity_model="sentence-transformers/all-MiniLM-L6-v2"):
"""Load models at startup"""
with st.spinner("Loading AI models... This may take a minute on first run."):
models = {}
# Load summarization model
models['summarizer'] = pipeline("summarization", model=summarization_model)
# Load feature extraction model for similarity
models['feature_extractor'] = pipeline("feature-extraction", model=similarity_model)
return models
# Preload models immediately when app starts
models = load_models()
#####################################
# Function: Extract Text from File
#####################################
def extract_text_from_file(file_obj):
"""
Extract text from .doc and .docx files.
Returns the extracted text or an error message if extraction fails.
"""
filename = file_obj.name
ext = os.path.splitext(filename)[1].lower()
text = ""
if ext == ".docx":
try:
document = docx.Document(file_obj)
text = "\n".join(para.text for para in document.paragraphs if para.text.strip())
except Exception as e:
text = f"Error processing DOCX file: {e}"
elif ext == ".doc":
try:
with tempfile.NamedTemporaryFile(delete=False, suffix=".doc") as tmp:
tmp.write(file_obj.read())
tmp_filename = tmp.name
text = textract.process(tmp_filename).decode("utf-8")
os.unlink(tmp_filename)
except Exception as e:
text = f"Error processing DOC file: {e}"
else:
text = "Unsupported file type."
return text
#####################################
# Function: Summarize Resume Text
#####################################
def summarize_resume_text(resume_text, models):
"""
Generates a concise summary of the resume text using the selected summarization model.
"""
start_time = time.time()
summarizer = models['summarizer']
# Handle long text
max_input_length = 1024 # Model limit
if len(resume_text) > max_input_length:
# Process in chunks if text is too long
chunks = [resume_text[i:i+max_input_length] for i in range(0, min(len(resume_text), 3*max_input_length), max_input_length)]
summaries = []
for chunk in chunks:
chunk_summary = summarizer(chunk, max_length=100, min_length=30, do_sample=False)[0]['summary_text']
summaries.append(chunk_summary)
candidate_summary = " ".join(summaries)
if len(candidate_summary) > max_input_length:
candidate_summary = summarizer(candidate_summary[:max_input_length], max_length=150, min_length=40, do_sample=False)[0]['summary_text']
else:
candidate_summary = summarizer(resume_text, max_length=150, min_length=40, do_sample=False)[0]['summary_text']
execution_time = time.time() - start_time
return candidate_summary, execution_time
#####################################
# Function: Compare Candidate Summary to Company Prompt
#####################################
def compute_suitability(candidate_summary, company_prompt, models):
"""
Compute the similarity between candidate summary and company prompt.
Returns a score in the range [0, 1] and execution time.
"""
start_time = time.time()
feature_extractor = models['feature_extractor']
# Extract features (embeddings)
candidate_features = feature_extractor(candidate_summary)
company_features = feature_extractor(company_prompt)
# Convert to numpy arrays and flatten if needed
candidate_vec = np.mean(np.array(candidate_features[0]), axis=0)
company_vec = np.mean(np.array(company_features[0]), axis=0)
# Compute cosine similarity (1 - cosine distance)
similarity = 1 - cosine(candidate_vec, company_vec)
execution_time = time.time() - start_time
return similarity, execution_time
#####################################
# Main Streamlit Interface
#####################################
st.title("Resume Analyzer and Company Suitability Checker")
st.markdown(
"""
Upload your resume file in **.doc** or **.docx** format. The app performs the following tasks:
1. Extracts text from the resume.
2. Uses a transformer-based model to generate a concise candidate summary.
3. Compares the candidate summary with a company profile to produce a suitability score.
"""
)
# File uploader
uploaded_file = st.file_uploader("Upload your resume (.doc or .docx)", type=["doc", "docx"])
# Company description text area
company_prompt = st.text_area(
"Enter the company description or job requirements:",
height=150,
help="Enter a detailed description of the company culture, role requirements, and desired skills.",
)
# Show model selection in sidebar
st.sidebar.header("Model Settings")
# Model dropdowns - we're now only allowing one model of each type to be selected
summarization_model = st.sidebar.selectbox(
"Summarization Model",
["google/pegasus-xsum", "facebook/bart-large-cnn", "t5-small", "sshleifer/distilbart-cnn-12-6"],
index=0,
help="Select the model to use for summarizing the resume text."
)
similarity_model = st.sidebar.selectbox(
"Similarity Model",
["sentence-transformers/all-MiniLM-L6-v2", "sentence-transformers/all-mpnet-base-v2",
"sentence-transformers/paraphrase-MiniLM-L3-v2", "sentence-transformers/multi-qa-mpnet-base-dot-v1"],
index=0,
help="Select the model to use for comparing candidate summary with company profile."
)
# Reload models if changed
if st.sidebar.button("Reload Models"):
st.cache_resource.clear()
models = load_models(summarization_model, similarity_model)
st.sidebar.success("Models reloaded successfully!")
# Process button
if uploaded_file is not None and company_prompt and st.button("Analyze Resume"):
with st.spinner("Processing..."):
# Extract text from resume
resume_text = extract_text_from_file(uploaded_file)
if resume_text.startswith("Error") or resume_text == "Unsupported file type.":
st.error(resume_text)
else:
# Display extracted text
with st.expander("Extracted Text"):
st.text(resume_text)
# Generate summary
summary, summarization_time = summarize_resume_text(resume_text, models)
# Display summary
st.subheader("Candidate Summary")
st.write(summary)
st.info(f"Summarization completed in {summarization_time:.2f} seconds")
# Only compute similarity if company description is provided
if company_prompt:
similarity_score, similarity_time = compute_suitability(summary, company_prompt, models)
# Display similarity score
st.subheader("Suitability Assessment")
st.markdown(f"**Matching Score:** {similarity_score:.2%}")
st.info(f"Similarity computation completed in {similarity_time:.2f} seconds")
# Provide interpretation
if similarity_score >= 0.85:
st.success("Excellent match! This candidate's profile is strongly aligned with the company requirements.")
elif similarity_score >= 0.70:
st.success("Good match! This candidate shows strong potential for the position.")
elif similarity_score >= 0.50:
st.warning("Moderate match. The candidate meets some requirements but there may be gaps.")
else:
st.error("Low match. The candidate's profile may not align well with the requirements.") |