CR7CAD's picture
Update app.py
0807dc8 verified
raw
history blame
8.94 kB
import os
import io
import streamlit as st
import docx
import time
import tempfile
import torch
import transformers
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
import docx2txt
# Set page title and hide sidebar
st.set_page_config(
page_title="Resume Analyzer and Company Suitability Checker",
initial_sidebar_state="collapsed"
)
# Hide sidebar completely with custom CSS
st.markdown("""
<style>
[data-testid="collapsedControl"] {display: none;}
section[data-testid="stSidebar"] {display: none;}
</style>
""", unsafe_allow_html=True)
#####################################
# Optimized Model Loading
#####################################
@st.cache_resource(show_spinner=True)
def load_models():
"""Load models at startup with optimizations"""
with st.spinner("Loading AI models... This may take a minute on first run."):
models = {}
# Use half-precision for all models to reduce memory usage and increase speed
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
device = 0 if torch.cuda.is_available() else -1 # Use GPU if available
# Load a smaller summarization model
models['summarizer'] = pipeline(
"summarization",
model="facebook/bart-large-cnn", # Faster model with good summarization quality
torch_dtype=torch_dtype,
device=device
)
# Use a smaller and faster text generation model
models['text_generator'] = pipeline(
"text-generation",
model="distilgpt2", # Much smaller than GPT-2
torch_dtype=torch_dtype,
device=device
)
return models
# Preload models immediately when app starts
models = load_models()
#####################################
# Function: Extract Text from File - Optimized
#####################################
@st.cache_data
def extract_text_from_file(file_content, file_name):
"""
Extract text from .doc or .docx files.
Returns the extracted text or an error message if extraction fails.
"""
ext = os.path.splitext(file_name)[1].lower()
text = ""
if ext == ".docx":
try:
# Use BytesIO to avoid disk I/O
doc_file = io.BytesIO(file_content)
document = docx.Document(doc_file)
text = "\n".join(para.text for para in document.paragraphs if para.text.strip())
except Exception as e:
text = f"Error processing DOCX file: {e}"
elif ext == ".doc":
try:
# For .doc files, we need to save to a temp file
with tempfile.NamedTemporaryFile(delete=False, suffix='.doc') as temp_file:
temp_file.write(file_content)
temp_path = temp_file.name
# Use docx2txt which is generally faster
try:
text = docx2txt.process(temp_path)
except Exception:
text = "Could not process .doc file. Please convert to .docx format."
# Clean up temp file
os.unlink(temp_path)
except Exception as e:
text = f"Error processing DOC file: {e}"
else:
text = "Unsupported file type. Please upload a .doc or .docx file."
return text
#####################################
# Function: Summarize Resume Text - Optimized
#####################################
def summarize_resume_text(resume_text, models):
"""
Generates a concise summary of the resume text using an optimized approach.
"""
start_time = time.time()
summarizer = models['summarizer']
# Truncate text to avoid multiple passes
max_input_length = 1024 # Model limit
truncated_text = resume_text[:max_input_length] if len(resume_text) > max_input_length else resume_text
# Get a concise summary in one pass
candidate_summary = summarizer(
truncated_text,
max_length=150,
min_length=30,
do_sample=False
)[0]['summary_text']
execution_time = time.time() - start_time
return candidate_summary, execution_time
#####################################
# Function: Generate Suitability Assessment - Optimized
#####################################
def generate_suitability_assessment(candidate_summary, company_prompt, models):
"""
Generate a suitability assessment using text generation - optimized.
"""
start_time = time.time()
text_generator = models['text_generator']
# Create a shorter, more focused prompt
prompt = f"""Resume: {candidate_summary[:300]}...
Company: {company_prompt[:300]}...
Suitability Assessment: This candidate"""
# Generate shorter text for faster completion
max_length = 50 + len(prompt.split())
generated_text = text_generator(
prompt,
max_length=max_length,
num_return_sequences=1,
temperature=0.7,
top_p=0.9,
do_sample=True
)[0]['generated_text']
# Extract only the assessment part
assessment = generated_text[len(prompt):].strip()
# Determine a numerical score (simplified for better performance)
positive_words = ['excellent', 'perfect', 'great', 'good', 'strong', 'ideal', 'qualified', 'aligns', 'matches', 'suitable']
negative_words = ['poor', 'weak', 'bad', 'insufficient', 'inadequate', 'not a good fit', 'misaligned', 'lacks']
assessment_lower = assessment.lower()
# Calculate score
positive_count = sum(1 for word in positive_words if word in assessment_lower)
negative_count = sum(1 for word in negative_words if word in assessment_lower)
total = positive_count + negative_count
if total > 0:
score = 0.5 + 0.4 * (positive_count - negative_count) / total
else:
score = 0.5
# Clamp the score
score = max(0.1, min(0.9, score))
execution_time = time.time() - start_time
return assessment, score, execution_time
#####################################
# Main Streamlit Interface
#####################################
st.title("Resume Analyzer and Company Suitability Checker")
st.markdown(
"""
Upload your resume file in **.doc** or **.docx** format. The app performs the following tasks:
1. Extracts text from the resume.
2. Uses a transformer-based model to generate a concise candidate summary.
3. Evaluates how well the candidate aligns with the company requirements.
"""
)
# File uploader
uploaded_file = st.file_uploader("Upload your resume (.doc or .docx)", type=["doc", "docx"])
# Company description text area
company_prompt = st.text_area(
"Enter the company description or job requirements:",
height=150,
help="Enter a detailed description of the company culture, role requirements, and desired skills.",
)
# Process button
if uploaded_file is not None and company_prompt and st.button("Analyze Resume"):
with st.spinner("Processing..."):
# Extract text from resume with caching
resume_text = extract_text_from_file(uploaded_file.getvalue(), uploaded_file.name)
if resume_text.startswith("Error") or resume_text == "Unsupported file type. Please upload a .doc or .docx file.":
st.error(resume_text)
else:
# Add a progress bar
progress_bar = st.progress(0)
# Generate summary
summary, summarization_time = summarize_resume_text(resume_text, models)
progress_bar.progress(50)
# Display summary
st.subheader("Candidate Summary")
st.write(summary)
st.info(f"Summarization completed in {summarization_time:.2f} seconds")
# Generate suitability assessment
assessment, estimated_score, generation_time = generate_suitability_assessment(summary, company_prompt, models)
progress_bar.progress(100)
# Display assessment
st.subheader("Suitability Assessment")
st.write(assessment)
st.markdown(f"**Estimated Matching Score:** {estimated_score:.2%}")
st.info(f"Assessment generated in {generation_time:.2f} seconds")
# Provide interpretation based on estimated score
if estimated_score >= 0.85:
st.success("Excellent match! This candidate's profile is strongly aligned with the company requirements.")
elif estimated_score >= 0.70:
st.success("Good match! This candidate shows strong potential for the position.")
elif estimated_score >= 0.50:
st.warning("Moderate match. The candidate meets some requirements but there may be gaps.")
else:
st.error("Low match. The candidate's profile may not align well with the requirements.")