CR7CAD's picture
Update app.py
6637415 verified
raw
history blame
6.4 kB
import os
import tempfile
import re
import streamlit as st
import docx
import textract
#####################################
# Function: Extract Text from File
#####################################
def extract_text_from_file(file_obj):
"""
Extract text from .doc and .docx files.
Returns the extracted text or an error message if extraction fails.
"""
filename = file_obj.name
ext = os.path.splitext(filename)[1].lower()
text = ""
if ext == ".docx":
try:
document = docx.Document(file_obj)
text = "\n".join([para.text for para in document.paragraphs])
except Exception as e:
text = f"Error processing DOCX file: {e}"
elif ext == ".doc":
try:
# textract requires a file name; save the file temporarily.
with tempfile.NamedTemporaryFile(delete=False, suffix=".doc") as tmp:
tmp.write(file_obj.read())
tmp.flush()
tmp_filename = tmp.name
text = textract.process(tmp_filename).decode("utf-8")
except Exception as e:
text = f"Error processing DOC file: {e}"
finally:
try:
os.remove(tmp_filename)
except Exception:
pass
else:
text = "Unsupported file type."
return text
#####################################
# Function: Extract Basic Resume Information
#####################################
def extract_basic_resume_info(text):
"""
Parse the extracted text to extract/summarize:
- Name
- Age
- Job Experience (capturing the block under the "experience" section)
- Skills
- Education
Returns a dictionary with the extracted elements.
"""
info = {
"Name": None,
"Age": None,
"Job Experience": None,
"Skills": None,
"Education": None,
}
# Extract Name (e.g., "Name: John Doe" or from heuristics)
name_match = re.search(r"[Nn]ame[:\-]\s*([A-Za-z\s,]+)", text)
if name_match:
info["Name"] = name_match.group(1).strip()
else:
# Heuristic: Assume the first line or a line with two or three capitalized words is the candidate's name.
potential_names = re.findall(r"\b[A-Z][a-z]+(?:\s+[A-Z][a-z]+){1,2}\b", text)
if potential_names:
info["Name"] = potential_names[0]
# Extract Age (e.g., "Age: 28")
age_match = re.search(r"[Aa]ge[:\-]\s*(\d{1,3})", text)
if age_match:
info["Age"] = age_match.group(1)
# Extract Job Experience using the "experience" section.
# This regex captures everything after the word "experience" until the next section heading (e.g., "additional information" or "skills")
experience_match = re.search(r"experience\s*(.*?)(?:\n\s*\n|additional information|$)", text, re.IGNORECASE | re.DOTALL)
if experience_match:
# Clean up the extracted block by removing any extra whitespace or newlines.
job_experience = experience_match.group(1).strip()
info["Job Experience"] = " ".join(job_experience.split())
else:
# Fallback if a labeled section isn't found.
exp_match = re.search(r"(\d+)\s+(years|yrs)\s+(?:of\s+)?experience", text, re.IGNORECASE)
if exp_match:
info["Job Experience"] = f"{exp_match.group(1)} {exp_match.group(2)}"
# Extract Skills (e.g., "Skills: Python, Java, SQL")
skills_match = re.search(r"(Skills|Technical Skills)[:\-]\s*(.+)", text, re.IGNORECASE)
if skills_match:
skills_str = skills_match.group(2).strip()
info["Skills"] = skills_str.rstrip(".")
# Extract Education (e.g., "Education: ...")
edu_match = re.search(r"education\s*(.*?)(?:\n\s*\n|experience|$)", text, re.IGNORECASE | re.DOTALL)
if edu_match:
education_block = edu_match.group(1).strip()
info["Education"] = " ".join(education_block.split())
else:
# Fallback: search for lines starting with common degree words.
edu_match = re.search(r"(Bachelor|Master|B\.Sc|M\.Sc|Ph\.D)[^\n]+", text)
if edu_match:
info["Education"] = edu_match.group(0)
return info
#####################################
# Function: Summarize Basic Info into a Paragraph
#####################################
def summarize_basic_info(info):
"""
Combine the extracted resume elements into a concise summary paragraph.
"""
parts = []
if info.get("Name"):
parts.append(f"Candidate {info['Name']}")
else:
parts.append("The candidate")
if info.get("Age"):
parts.append(f"aged {info['Age']}")
if info.get("Job Experience"):
parts.append(f"with job experience: {info['Job Experience']}")
if info.get("Skills"):
parts.append(f"skilled in {info['Skills']}")
if info.get("Education"):
parts.append(f"and educated in {info['Education']}")
summary_paragraph = ", ".join(parts) + "."
return summary_paragraph
#####################################
# Main Resume Processing Logic
#####################################
def process_resume(file_obj):
if file_obj is None:
return None, None
# Extract the full resume text.
resume_text = extract_text_from_file(file_obj)
# Extract basic info from the text.
basic_info = extract_basic_resume_info(resume_text)
# Create a summary paragraph from the basic info.
summary_paragraph = summarize_basic_info(basic_info)
return resume_text, summary_paragraph
#####################################
# Streamlit Interface
#####################################
st.title("Resume Basic Information Summary")
st.markdown("""
Upload your resume file in **.doc** or **.docx** format. The app extracts key details such as name, age, job experience, skills,
and education, then summarizes them into a single paragraph.
""")
uploaded_file = st.file_uploader("Upload Resume", type=["doc", "docx"])
if st.button("Process Resume"):
if uploaded_file is None:
st.error("Please upload a file first.")
else:
with st.spinner("Processing resume..."):
resume_text, summary_paragraph = process_resume(uploaded_file)
st.subheader("Summary Paragraph")
st.markdown(summary_paragraph)
st.subheader("Full Extracted Resume Text")
st.text_area("", resume_text, height=300)