Spaces:
Running
Running
import gradio as gr | |
from huggingface_hub import InferenceClient | |
from typing import List, Tuple | |
# Initialize the InferenceClient with the model you want to use | |
client = InferenceClient("microsoft/phi-4") | |
# Define the system message (non-editable) | |
SYSTEM_MESSAGE = "You're an advanced AI assistant designed to engage in friendly and informative conversations. Your role is to respond to user queries with helpful, clear, and concise answers, while maintaining a conversational tone. You can provide advice, explanations, and solutions based on user input." | |
def generate_response( | |
user_input: str, | |
history: List[Tuple[str, str]], | |
max_tokens: int, | |
temperature: float, | |
top_p: float | |
) -> str: | |
""" | |
Generates a response from the AI model. | |
Args: | |
user_input: The user's input message. | |
history: A list of tuples containing the conversation history | |
(user input, AI response). | |
max_tokens: The maximum number of tokens in the generated response. | |
temperature: Controls the randomness of the generated response. | |
top_p: Controls the nucleus sampling probability. | |
Returns: | |
str: The generated response from the AI model. | |
""" | |
try: | |
# Build the message list with system message and history | |
messages = [{"role": "system", "content": SYSTEM_MESSAGE}] | |
messages.extend([{"role": "user" if i % 2 == 0 else "assistant", "content": val} | |
for i, val in enumerate(sum(history, ()))]) | |
messages.append({"role": "user", "content": user_input}) | |
# Generate response from the model | |
response = "" | |
for msg in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
if 'choices' in msg and len(msg['choices']) > 0: | |
token = msg['choices'][0].get('delta', {}).get('content', '') | |
if token: | |
response += token | |
return response | |
except Exception as e: | |
print(f"An error occurred: {e}") | |
return "Error: An unexpected error occurred while processing your request." | |
# Define the Gradio Interface | |
iface = gr.Interface( | |
fn=generate_response, | |
inputs=[ | |
gr.Textbox(lines=2, label="Your Message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max Tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"), | |
gr.Chatbot(label="Conversation") | |
], | |
outputs=[gr.Textbox(label="AI Response")], | |
title="Chat with AI", | |
description="Interact with an AI assistant that engages in friendly and informative conversations.", | |
) | |
# Launch the interface | |
if __name__ == "__main__": | |
iface.launch() | |