File size: 4,500 Bytes
d87a301
 
 
 
 
2db3b8e
d87a301
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2db3b8e
 
d87a301
 
 
 
 
 
 
 
 
 
 
 
2db3b8e
d87a301
 
 
 
8f50378
d87a301
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

import gradio as gr
import torch
from PIL import Image, ImageFilter, ImageDraw
from ultralytics import YOLO
import spaces

MODEL_PATH = "./models/face_yolov8n_v2.pt"
MODEL = YOLO(MODEL_PATH)

def create_rounded_rectangle_mask(image:Image.Image, radius, alpha=255):
    size = image.size
    factor = 5  # Factor to increase the image size that I can later antialiaze the corners
    radius = radius * factor
    image = Image.new('RGBA', (size[0] * factor, size[1] * factor), (0, 0, 0, 0))

    # create corner
    corner = Image.new('RGBA', (radius, radius), (0, 0, 0, 0))
    draw = ImageDraw.Draw(corner)
    # added the fill = .. you only drew a line, no fill
    draw.pieslice((0, 0, radius * 2, radius * 2), 180, 270, fill=(255, 255, 255, alpha))

    # max_x, max_y
    mx, my = (size[0] * factor, size[1] * factor)

    # paste corner rotated as needed
    # use corners alpha channel as mask
    image.paste(corner, (0, 0), corner)
    image.paste(corner.rotate(90), (0, my - radius), corner.rotate(90))
    image.paste(corner.rotate(180), (mx - radius, my - radius), corner.rotate(180))
    image.paste(corner.rotate(270), (mx - radius, 0), corner.rotate(270))

    # draw both inner rects
    draw = ImageDraw.Draw(image)
    draw.rectangle([(radius, 0), (mx - radius, my)], fill=(255, 255, 255, alpha))
    draw.rectangle([(0, radius), (mx, my - radius)], fill=(255, 255, 255, alpha))
    return image.resize(size, Image.LANCZOS)  # Smooth the corners

def max_rounding_radius(rect_coords):
    # Extract the coordinates of the rectangle [x0, y0, x1, y1]
    rect_coords = [coord
-1 for coord in rect_coords]
    x0, y0, x1, y1 = rect_coords

    # Calculate the width and height of the rectangle
    width = x1 - x0
    height = y1 - y0

    # Determine the smallest dimension (width or height)
    min_dimension = min(width, height)

    # Calculate the maximum radius as half of the smallest dimension
    return min_dimension // 2

@spaces.GPU(enable_queue=True)
def generate_image(source_image:Image.Image, confidence=0.3, radius=50, blur_amount=10, margin=0):
    if source_image is None:
        return source_image

    device = "cuda" if torch.cuda.is_available() else "cpu"
    pred = MODEL(source_image, conf=confidence, device=device)
    bboxes = pred[0].boxes.xyxy.cpu().numpy()
    if bboxes.size == 0:
        result = None
    else:
        bboxes = bboxes.tolist()
        result = source_image.copy()

        for bboxe in bboxes:
            bboxe = [round(coord) for coord in bboxe]

            mean_margin = margin // 2
            new_bboxe = bboxe[0]-mean_margin, bboxe[1]-mean_margin, bboxe[2]+mean_margin, bboxe[3]+mean_margin

            new_x0, new_y0, new_x1, new_y1 = new_bboxe
            new_width = new_x1 - new_x0
            new_height = new_y1 - new_y0

            if not (new_width > source_image.width or new_height > source_image.height):
                bboxe = new_bboxe

            # Crop the region of interest
            region = result.crop(bboxe)

            final_radius = round(max_rounding_radius(bboxe)* (radius/100))
            mask = create_rounded_rectangle_mask(region, final_radius)

            # Apply blur filter to the cropped region
            blurred_region = region.filter(ImageFilter.GaussianBlur(radius=blur_amount))

            # Paste the blurred region back onto the original image
            result.paste(blurred_region, bboxe, mask)

    return result

css = """
img {
    max-height: 500px;
    object-fit: contain;
}
"""

with gr.Blocks(css=css) as FACE_2_BLUR:
    with gr.Row():
        with gr.Column():
            image = gr.Image(label="Upload your image", type="pil")
            generate_btn = gr.Button("Generate")
            confidence = gr.Slider(label="Detection model confidence threshold.", value=0.3, minimum=0.0, maximum=1.0, step=0.01)
            radius = gr.Slider(label="Edges radius in percentage.", value=50, minimum=0, maximum=100, step=1)
            blur_amount = gr.Number(label="Controls the strength of the blur effect.", value=10, minimum=1, maximum=20, step=1)
            margin = gr.Slider(label="Margin to add to the blurred box.", value=0, minimum=0, maximum=200)

        with gr.Column():
            image_out = gr.Image(label="Blurred face image", type="pil")

    generate_btn.click(
        fn=generate_image,
        inputs=[image, confidence, radius, blur_amount, margin],
        outputs=image_out,
        api_name="generate_blurred"
    )

FACE_2_BLUR.launch()