File size: 30,669 Bytes
022a8c8
 
 
 
 
f11c554
022a8c8
 
 
 
 
 
e1bf1f2
 
5c0fd51
e1bf1f2
5c0fd51
022a8c8
 
f11c554
4278cab
457a598
 
 
 
 
 
 
e1bf1f2
 
457a598
 
 
4278cab
 
457a598
 
 
4267e89
457a598
 
4278cab
457a598
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4278cab
457a598
4278cab
 
4267e89
457a598
 
 
 
 
 
 
4278cab
457a598
 
4278cab
 
 
 
457a598
 
 
 
4278cab
 
 
 
 
 
 
457a598
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4278cab
457a598
 
 
4278cab
 
457a598
 
 
4278cab
457a598
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1bf1f2
 
457a598
f11c554
457a598
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26a4f28
b6c97f4
457a598
 
 
 
 
4278cab
 
457a598
 
 
4278cab
457a598
 
 
4af2f8e
457a598
e96e53f
 
 
 
 
 
 
5146319
e96e53f
457a598
 
 
 
 
 
4267e89
457a598
 
 
 
 
 
 
3b677f6
457a598
3b677f6
457a598
 
 
 
 
4267e89
457a598
 
 
 
 
 
 
 
 
4267e89
457a598
 
4278cab
 
 
 
 
 
 
 
4267e89
 
457a598
 
4278cab
 
 
 
 
 
 
 
457a598
4267e89
457a598
 
4278cab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4267e89
457a598
 
 
 
 
4267e89
 
457a598
 
 
 
 
 
 
 
 
 
4267e89
457a598
 
 
 
 
4267e89
457a598
 
 
 
 
 
 
 
 
 
 
 
4267e89
 
457a598
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1bf1f2
 
4267e89
457a598
 
4278cab
457a598
 
 
 
 
 
b6c97f4
c643a72
b6c97f4
 
457a598
26a4f28
4267e89
26a4f28
 
 
 
4267e89
 
26a4f28
 
 
 
 
4267e89
b87c2b6
457a598
 
 
 
 
 
 
 
 
 
3455289
457a598
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca508ba
4267e89
ca508ba
 
4267e89
 
457a598
e96e53f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2106c5
4267e89
3455289
 
 
 
f5cff4e
3455289
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9296210
3455289
 
 
 
 
 
d2106c5
 
 
 
 
 
 
3455289
 
d2106c5
457a598
 
 
 
 
 
 
 
 
 
4278cab
457a598
 
 
9f36b00
4278cab
 
 
457a598
 
 
 
4278cab
 
457a598
 
 
 
 
 
4278cab
457a598
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4278cab
 
457a598
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f36b00
4278cab
457a598
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
314cc61
87b4648
 
 
457a598
 
 
 
4278cab
9f36b00
457a598
4278cab
 
 
 
 
 
 
9f36b00
457a598
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f36b00
457a598
 
4278cab
457a598
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f36b00
4278cab
 
4279e53
 
457a598
4279e53
 
 
 
 
4278cab
4279e53
4278cab
 
 
 
 
4279e53
 
 
 
 
 
4278cab
4279e53
4278cab
 
 
 
9f36b00
 
 
4278cab
457a598
 
 
 
 
 
 
 
 
 
 
 
4278cab
 
9f36b00
4278cab
 
 
 
 
 
 
457a598
4278cab
 
9296210
4278cab
 
 
 
 
 
 
 
 
 
457a598
4278cab
 
 
 
9f36b00
4278cab
 
 
 
 
 
9f36b00
 
 
457a598
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856

from langfuse import Langfuse
from langfuse.decorators import observe, langfuse_context

from config.config import settings
import os

# Initialize Langfuse
os.environ["LANGFUSE_PUBLIC_KEY"] = "pk-lf-9f2c32d2-266f-421d-9b87-51377f0a268c"
os.environ["LANGFUSE_SECRET_KEY"] = "sk-lf-229e10c5-6210-4a4b-a432-0f17bc66e56c"
os.environ["LANGFUSE_HOST"] = "https://chris4k-langfuse-template-space.hf.space"  # 🇪🇺 EU region

try:
    langfuse = Langfuse()
except Exception as e:
    print("Langfuse Offline")
    




# model_manager.py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from llama_cpp import Llama
from typing import Optional, Dict
import logging
from functools import lru_cache
from config.config import GenerationConfig, ModelConfig


class ModelManager:
    def __init__(self, device: Optional[str] = None):
        self.logger = logging.getLogger(__name__)
        self.device = device or ("cuda" if torch.cuda.is_available() else "cpu")
        self.models: Dict[str, Any] = {}
        self.tokenizers: Dict[str, Any] = {}

    @observe()
    def load_model(self, model_id: str, model_path: str, model_type: str, config: ModelConfig) -> None:
        """Load a model with specified configuration."""
        try:
            ##could be differnt models, so we can use a factory pattern to load the correct model - textgen, llama, gguf, text2video, text2image etc.
            if model_type == "llama":
                self.tokenizers[model_id] = AutoTokenizer.from_pretrained(
                    model_path,
                    padding_side='left',
                    trust_remote_code=True,
                    **config.tokenizer_kwargs
                )
                if self.tokenizers[model_id].pad_token is None:
                    self.tokenizers[model_id].pad_token = self.tokenizers[model_id].eos_token
                
                self.models[model_id] = AutoModelForCausalLM.from_pretrained(
                    model_path,
                    device_map="auto",
                    trust_remote_code=True,
                    **config.model_kwargs
                )
            elif model_type == "gguf":
                #TODO load the model first from the cache, if not found load the model and save it in the cache
                #from huggingface_hub import hf_hub_download
                #prm_model_path = hf_hub_download(
                #    repo_id="tensorblock/Llama3.1-8B-PRM-Mistral-Data-GGUF",
                #    filename="Llama3.1-8B-PRM-Mistral-Data-Q4_K_M.gguf"
                #)

                
                self.models[model_id] = self._load_quantized_model(
                    model_path,
                    **config.quantization_kwargs
                )
        except Exception as e:
            self.logger.error(f"Failed to load model {model_id}: {str(e)}")
            raise

    @observe()
    def unload_model(self, model_id: str) -> None:
        """Unload a model and free resources."""
        if model_id in self.models:
            del self.models[model_id]
            if model_id in self.tokenizers:
                del self.tokenizers[model_id]
            torch.cuda.empty_cache()

    def _load_quantized_model(self, model_path: str, **kwargs) -> Llama:
        """Load a quantized GGUF model."""
        try:
            n_gpu_layers = -1 if torch.cuda.is_available() else 0
            model = Llama(
                model_path=model_path,
                n_ctx=kwargs.get('n_ctx', 2048),
                n_batch=kwargs.get('n_batch', 512),
                n_gpu_layers=kwargs.get('n_gpu_layers', n_gpu_layers),
                verbose=kwargs.get('verbose', False)
            )
            return model
        except Exception as e:
            self.logger.error(f"Failed to load GGUF model: {str(e)}")
            raise


# cache.py 
from functools import lru_cache
from typing import Tuple, Any

# TODO explain howto use the cache
class ResponseCache:
    def __init__(self, cache_size: int = 1000):
        self.cache_size = cache_size
        self._initialize_cache()

    def _initialize_cache(self):
        @lru_cache(maxsize=self.cache_size)
        def cached_response(prompt: str, config_hash: str) -> Tuple[str, float]:
            pass
        self.get_cached_response = cached_response

    def cache_response(self, prompt: str, config: GenerationConfig, response: str, score: float) -> None:
        config_hash = hash(str(config.__dict__))
        self.get_cached_response(prompt, str(config_hash))
        
    def get_response(self, prompt: str, config: GenerationConfig) -> Optional[Tuple[str, float]]:
        config_hash = hash(str(config.__dict__))
        return self.get_cached_response(prompt, str(config_hash))


# batch_processor.py
from typing import List, Dict
import asyncio

#TODO explain how to use the batch processor
class BatchProcessor:
    def __init__(self, max_batch_size: int = 32, max_wait_time: float = 0.1):
        self.max_batch_size = max_batch_size
        self.max_wait_time = max_wait_time
        self.pending_requests: List[Dict] = []
        self.lock = asyncio.Lock()

    async def add_request(self, request: Dict) -> Any:
        async with self.lock:
            self.pending_requests.append(request)
            if len(self.pending_requests) >= self.max_batch_size:
                return await self._process_batch()
            else:
                await asyncio.sleep(self.max_wait_time)
                if self.pending_requests:
                    return await self._process_batch()

    async def _process_batch(self) -> List[Any]:
        batch = self.pending_requests[:self.max_batch_size]
        self.pending_requests = self.pending_requests[self.max_batch_size:]
        # TODO implement the batch processing logic
        return batch



# base_generator.py
from abc import ABC, abstractmethod
from typing import AsyncGenerator, Dict, Any, Optional, List, Tuple
from dataclasses import dataclass
from logging import getLogger 


from config.config import GenerationConfig, ModelConfig

class BaseGenerator(ABC):
    """Base class for all generator implementations."""
    
    def __init__(
        self,
        model_name: str,
        device: Optional[str] = None,
        default_generation_config: Optional[GenerationConfig] = None,
        model_config: Optional[ModelConfig] = None,
        cache_size: int = 1000,
        max_batch_size: int = 32
    ):
        self.logger = getLogger(__name__)
        self.model_manager = ModelManager(device)
        self.cache = ResponseCache(cache_size)
        self.batch_processor = BatchProcessor(max_batch_size)
        self.health_check = HealthCheck()
       # self.tokenizer = self.model_manager.tokenizers[model_name]
        #self.tokenizer = self.load_tokenizer(llama_model_name)  # Add this line to initialize the tokenizer
        self.default_config = default_generation_config or GenerationConfig()
        self.model_config = model_config or ModelConfig()
        
    @abstractmethod
    async def generate_stream(
        self,
        prompt: str,
        config: Optional[GenerationConfig] = None
    ) -> AsyncGenerator[str, None]:
        pass
        
    @abstractmethod
    def _get_generation_kwargs(self, config: GenerationConfig) -> Dict[str, Any]:
        pass
 
    @abstractmethod
    def generate(
        self,
        prompt: str,
        model_kwargs: Dict[str, Any],
        strategy: str = "default",
        **kwargs
    ) -> str:
        pass


# strategy.py
#TODO UPDATE Paths
from abc import ABC, abstractmethod
from typing import List, Tuple

@observe()
class GenerationStrategy(ABC):
    """Base class for generation strategies."""
    
    @abstractmethod
    def generate(self, generator: 'BaseGenerator', prompt: str, model_kwargs: Dict[str, Any], **kwargs) -> str:
        pass

 
class DefaultStrategy(GenerationStrategy):
   
    def generate(self, generator: 'BaseGenerator', prompt: str, model_kwargs: Dict[str, Any], **kwargs) -> str:
        input_ids = generator.tokenizer(prompt, return_tensors="pt").input_ids.to(generator.device)
        output = generator.model.generate(input_ids, **model_kwargs)
        return generator.tokenizer.decode(output[0], skip_special_tokens=True)

@observe()
class MajorityVotingStrategy(GenerationStrategy):
    def generate(self, generator: 'BaseGenerator', prompt: str, model_kwargs: Dict[str, Any], num_samples: int = 5, **kwargs) -> str:
        outputs = []
        for _ in range(num_samples):
            input_ids = generator.tokenizer(prompt, return_tensors="pt").input_ids.to(generator.device)
            output = generator.model.generate(input_ids, **model_kwargs)
            outputs.append(generator.tokenizer.decode(output[0], skip_special_tokens=True))
        return max(set(outputs), key=outputs.count)

@observe()
class BestOfN(GenerationStrategy):
    def generate(self, generator: 'BaseGenerator', prompt: str, model_kwargs: Dict[str, Any], num_samples: int = 5, **kwargs) -> str:
            scored_outputs = []
            for _ in range(num_samples):
                input_ids = self.llama_tokenizer(prompt, return_tensors="pt").input_ids.to(self.device)
                output = self.llama_model.generate(input_ids, **model_kwargs)
                response = self.llama_tokenizer.decode(output[0], skip_special_tokens=True)
                score = self.prm_model(**self.llama_tokenizer(response, return_tensors="pt").to(self.device)).logits.mean().item()
                scored_outputs.append((response, score))
            return max(scored_outputs, key=lambda x: x[1])[0]

@observe() 
class BeamSearch(GenerationStrategy):
    def generate(self, generator: 'BaseGenerator', prompt: str, model_kwargs: Dict[str, Any], num_samples: int = 5, **kwargs) -> str:
            input_ids = self.llama_tokenizer(prompt, return_tensors="pt").input_ids.to(self.device)
            outputs = self.llama_model.generate(
                input_ids,
                num_beams=num_samples,
                num_return_sequences=num_samples,
                **model_kwargs
            )
            return [self.llama_tokenizer.decode(output, skip_special_tokens=True) for output in outputs]

@observe()
class DVT(GenerationStrategy):
    def generate(self, generator: 'BaseGenerator', prompt: str, model_kwargs: Dict[str, Any], num_samples: int = 5, **kwargs) -> str:
            results = []
            for _ in range(breadth):
                input_ids = self.llama_tokenizer(prompt, return_tensors="pt").input_ids.to(self.device)
                output = self.llama_model.generate(input_ids, **model_kwargs)
                response = self.llama_tokenizer.decode(output[0], skip_special_tokens=True)
                score = self.prm_model(**self.llama_tokenizer(response, return_tensors="pt").to(self.device)).logits.mean().item()
                results.append((response, score))
            
            for _ in range(depth - 1):
                best_responses = sorted(results, key=lambda x: x[1], reverse=True)[:breadth]
                for response, _ in best_responses:
                    input_ids = self.llama_tokenizer(response, return_tensors="pt").input_ids.to(self.device)
                    output = self.llama_model.generate(input_ids, **model_kwargs)
                    extended_response = self.llama_tokenizer.decode(output[0], skip_special_tokens=True)
                    score = self.prm_model(**self.llama_tokenizer(extended_response, return_tensors="pt").to(self.device)).logits.mean().item()
                    results.append((extended_response, score))
            return max(results, key=lambda x: x[1])[0]
        
@observe()
class COT(GenerationStrategy):
    def generate(self, generator: 'BaseGenerator', prompt: str, model_kwargs: Dict[str, Any], num_samples: int = 5, **kwargs) -> str:
        #TODO implement the chain of thought strategy
        
        return "Not implemented yet"       

@observe()
class ReAct(GenerationStrategy):
    def generate(self, generator: 'BaseGenerator', prompt: str, model_kwargs: Dict[str, Any], num_samples: int = 5, **kwargs) -> str:
        #TODO implement the ReAct framework       
        return "Not implemented yet"
#  Add other strategy implementations...

# prompt_builder.py
from typing import Protocol, List, Tuple
from transformers import AutoTokenizer

@observe()
class PromptTemplate(Protocol):
    """Protocol for prompt templates."""
    def format(self, context: str, user_input: str, chat_history: List[Tuple[str, str]], **kwargs) -> str:
        pass

@observe()
class LlamaPromptTemplate:
    def format(self, context: str, user_input: str, chat_history: List[Tuple[str, str]], max_history_turns: int = 1) -> str:
        system_message = f"Please assist based on the following context: {context}"
        prompt = f"<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\n{system_message}<|eot_id|>"
        
        for user_msg, assistant_msg in chat_history[-max_history_turns:]:
            prompt += f"<|start_header_id|>user<|end_header_id|>\n\n{user_msg}<|eot_id|>"
            prompt += f"<|start_header_id|>assistant<|end_header_id|>\n\n{assistant_msg}<|eot_id|>"
            
        prompt += f"<|start_header_id|>user<|end_header_id|>\n\n{user_input}<|eot_id|>"
        prompt += "<|start_header_id|>assistant<|end_header_id|>\n\n"
        return prompt
        
@observe()
class TransformersPromptTemplate:
    def __init__(self, model_path: str):
        self.tokenizer = AutoTokenizer.from_pretrained(model_path)
        
    def format(self, context: str, user_input: str, chat_history: List[Tuple[str, str]], **kwargs) -> str:
        messages = [
            {
                "role": "system",
                "content": f"Please assist based on the following context: {context}",
            }
        ]
        
        for user_msg, assistant_msg in chat_history:
            messages.extend([
                {"role": "user", "content": user_msg},
                {"role": "assistant", "content": assistant_msg}
            ])
            
        messages.append({"role": "user", "content": user_input})
        
        tokenized_chat = self.tokenizer.apply_chat_template(
            messages,
            tokenize=False,
            add_generation_prompt=True
        )
        return tokenized_chat

# health_check.py
import psutil
from dataclasses import dataclass
from typing import Dict, Any

@dataclass
class HealthStatus:
    status: str
    gpu_memory: Dict[str, float]
    cpu_usage: float
    ram_usage: float
    model_status: Dict[str, str]

class HealthCheck:
    @staticmethod
    def check_gpu_memory() -> Dict[str, float]:
        if torch.cuda.is_available():
            return {
                f"gpu_{i}": torch.cuda.memory_allocated(i) / 1024**3
                for i in range(torch.cuda.device_count())
            }
        return {}

    @staticmethod
    def check_system_resources() -> HealthStatus:
        return HealthStatus(
            status="healthy",
            gpu_memory=HealthCheck.check_gpu_memory(),
            cpu_usage=psutil.cpu_percent(),
            ram_usage=psutil.virtual_memory().percent,
            #TODO add more system resources like disk, network, etc.
            model_status={}  # To be filled by the model manager
        )


# llama_generator.py
from config.config import GenerationConfig, ModelConfig

@observe()
class LlamaGenerator(BaseGenerator):
    def __init__(
        self,
        llama_model_name: str,
        prm_model_path: str,
        device: Optional[str] = None,
        default_generation_config: Optional[GenerationConfig] = None,
        model_config: Optional[ModelConfig] = None,
        cache_size: int = 1000,
        max_batch_size: int = 32,
       # self.tokenizer = self.load_tokenizer(llama_model_name)
#        self.tokenizer = self.load_tokenizer(llama_model_name)  # Add this line to initialize the tokenizer

    ):

        @observe()
        def load_model(self, model_name: str):
            # Code to load your model, e.g., Hugging Face's transformers library
            from transformers import AutoModelForCausalLM
            return AutoModelForCausalLM.from_pretrained(model_name)

        @observe()
        def load_tokenizer(self, model_name: str):
            # Load the tokenizer associated with the model
            from transformers import AutoTokenizer
            return AutoTokenizer.from_pretrained(model_name)
            
        self.tokenizer = load_tokenizer(llama_model_name)  # Add this line to initialize the tokenizer
 
        super().__init__(
            llama_model_name,
            device,
            default_generation_config,
            model_config,
            cache_size,
            max_batch_size
        )
        
        # Initialize models
        self.model_manager.load_model( 
            "llama",
            llama_model_name,
            "llama",
            self.model_config
        )
        self.model_manager.load_model(
            "prm",
            prm_model_path,
            "gguf",
            self.model_config
        )
        
        self.prompt_builder = LlamaPromptTemplate()
        self._init_strategies()
        
    def _init_strategies(self):
        self.strategies = {
            "default": DefaultStrategy(),
            "majority_voting": MajorityVotingStrategy(),
            "best_of_n": BestOfN(),
            "beam_search": BeamSearch(),
            "dvts": DVT(),
        }
        
    def _get_generation_kwargs(self, config: GenerationConfig) -> Dict[str, Any]:
        """Get generation kwargs based on config."""
        return {
            key: getattr(config, key)
            for key in [
                "max_new_tokens",
                "temperature",
                "top_p",
                "top_k",
                "repetition_penalty",
                "length_penalty",
                "do_sample"
            ]
            if hasattr(config, key)
        }

    @observe()
    def generate_stream (self):
        return " NOt implememnted yet "

    @observe()
    def generate(
            self,
            prompt: str,
            model_kwargs: Dict[str, Any],
            strategy: str = "default",
            **kwargs
        ) -> str:
            """
            Generate text based on a given strategy.
        
            Args:
                prompt (str): Input prompt for text generation.
                model_kwargs (Dict[str, Any]): Additional arguments for model generation.
                strategy (str): The generation strategy to use (default: "default").
                **kwargs: Additional arguments passed to the strategy.
        
            Returns:
                str: Generated text response.
        
            Raises:
                ValueError: If the specified strategy is not available.
            """
            # Validate that the strategy exists
            if strategy not in self.strategies:
                raise ValueError(f"Unknown strategy: {strategy}. Available strategies are: {list(self.strategies.keys())}")
        
            # Extract `generator` from kwargs if it exists to prevent duplication
            kwargs.pop("generator", None)
        
            # Call the selected strategy with the provided arguments
            return self.strategies[strategy].generate(
                generator=self,            # The generator instance
                prompt=prompt,             # The input prompt
                model_kwargs=model_kwargs, # Arguments for the model
                **kwargs                   # Any additional strategy-specific arguments
            )

    @observe()
    def generate_with_context(
        self,
        context: str,
        user_input: str,
        chat_history: List[Tuple[str, str]], 
        model_kwargs: Dict[str, Any],
        max_history_turns: int = 3,
        strategy: str = "default",
        num_samples: int = 5,
        depth: int = 3,
        breadth: int = 2,
        
    ) -> str:
        """Generate a response using context and chat history.
        
        Args:
            context (str): Context for the conversation
            user_input (str): Current user input
            chat_history (List[Tuple[str, str]]): List of (user, assistant) message pairs
            model_kwargs (dict): Additional arguments for model.generate()
            max_history_turns (int): Maximum number of history turns to include
            strategy (str): Generation strategy
            num_samples (int): Number of samples for applicable strategies
            depth (int): Depth for DVTS strategy
            breadth (int): Breadth for DVTS strategy
            
        Returns:
            str: Generated response
        """
        prompt = self.prompt_builder.format(
            context,
            user_input,
            chat_history,
            max_history_turns
        )
        return self.generate(
            generator=self,
            prompt=prompt,
            model_kwargs=model_kwargs,
            strategy=strategy,
            num_samples=num_samples,
            depth=depth,
            breadth=breadth
        )


    
    def check_health(self) -> HealthStatus:
        """Check the health status of the generator."""
        return self.health_check.check_system_resources() # TODO add model status
		
	
###################
################# 
 
from fastapi import FastAPI, HTTPException, BackgroundTasks, WebSocket, Depends
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import StreamingResponse
from pydantic import BaseModel, Field, ConfigDict
from typing import List, Optional, Dict, Any, AsyncGenerator
import asyncio
import uuid
from datetime import datetime
import json
from huggingface_hub import hf_hub_download
from contextlib import asynccontextmanager

 

class ChatMessage(BaseModel):
    """A single message in the chat history."""
    role: str = Field(
        ..., 
        description="Role of the message sender", 
        examples=["user", "assistant"]
    )
    content: str = Field(..., description="Content of the message")
    
    model_config = ConfigDict(
        json_schema_extra={
            "example": {
                "role": "user",
                "content": "What is the capital of France?"
            }
        }
    )
	
class GenerationConfig(BaseModel):
    """Configuration for text generation."""
    temperature: float = Field(
        0.7,
        ge=0.0,
        le=2.0,
        description="Controls randomness in the output. Higher values (e.g., 0.8) make the output more random, lower values (e.g., 0.2) make it more focused and deterministic."
    )
    max_new_tokens: int = Field(
        100,
        ge=1,
        le=2048,
        description="Maximum number of tokens to generate"
    )
    top_p: float = Field(
        0.9,
        ge=0.0,
        le=1.0,
        description="Nucleus sampling parameter. Only tokens with cumulative probability < top_p are considered."
    )
    top_k: int = Field(
        50,
        ge=0,
        description="Only consider the top k tokens for text generation"
    )
    strategy: str = Field(
        "default",
        description="Generation strategy to use",
        examples=["default", "majority_voting", "best_of_n", "beam_search", "dvts"]
    )
    num_samples: int = Field(
        5,
        ge=1,
        le=10,
        description="Number of samples to generate (used in majority_voting and best_of_n strategies)"
    )

class GenerationRequest(BaseModel):
    """Request model for text generation."""
    context: Optional[str] = Field(
        None,
        description="Additional context to guide the generation",
        examples=["You are a helpful assistant skilled in Python programming"]
    )
    messages: List[ChatMessage] = Field(
        ...,
        description="Chat history including the current message",
        min_items=1
    )
    config: Optional[GenerationConfig] = Field(
        None,
        description="Generation configuration parameters"
    )
    stream: bool = Field(
        False,
        description="Whether to stream the response token by token"
    )
    
    model_config = ConfigDict(
        json_schema_extra={
            "example": {
                "context": "You are a helpful assistant",
                "messages": [
                    {"role": "user", "content": "What is the capital of France?"}
                ],
                "config": {
                    "temperature": 0.7,
                    "max_new_tokens": 100
                },
                "stream": False
            }
        }
    )

class GenerationResponse(BaseModel):
    """Response model for text generation."""
    id: str = Field(..., description="Unique generation ID")
    content: str = Field(..., description="Generated text content")
    created_at: datetime = Field(
        default_factory=datetime.now,
        description="Timestamp of generation"
    )
	
	
# Model and cache management
async def get_prm_model_path():
    """Download and cache the PRM model."""
    return await asyncio.to_thread(
        hf_hub_download,
        repo_id="tensorblock/Llama3.1-8B-PRM-Mistral-Data-GGUF",
        filename="Llama3.1-8B-PRM-Mistral-Data-Q4_K_M.gguf"
    )

# Initialize generator globally
generator = None

@asynccontextmanager
async def lifespan(app: FastAPI):
    """Lifecycle management for the FastAPI application."""
    # Startup: Initialize generator
    global generator
    try:
        prm_model_path = await get_prm_model_path()
        generator = LlamaGenerator(
            llama_model_name="meta-llama/Llama-3.2-1B-Instruct",
            prm_model_path=prm_model_path,
            default_generation_config=GenerationConfig(
                max_new_tokens=100,
                temperature=0.7
            )
        )
        yield
    finally:
        # Shutdown: Clean up resources
        if generator:
            await asyncio.to_thread(generator.cleanup)

# FastAPI application
app = FastAPI(
    title="Inference Deluxe Service",
    description="""
    A service for generating text using LLaMA models with various generation strategies.
    
    Generation Strategies:
    - default: Standard autoregressive generation
    - majority_voting: Generates multiple responses and selects the most common one
    - best_of_n: Generates multiple responses and selects the best based on a scoring metric
    - beam_search: Uses beam search for more coherent text generation
    - dvts: Dynamic vocabulary tree search for efficient generation
    """,
    version="1.0.0",
    lifespan=lifespan
)

# CORS middleware
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

async def get_generator():
    """Dependency to get the generator instance."""
    if not generator:
        raise HTTPException(
            status_code=503,
            detail="Generator not initialized"
        )
    return generator

@app.post(
    "/generate",
    response_model=GenerationResponse,
    tags=["generation"],
    summary="Generate text response",
    response_description="Generated text with unique identifier"
)
async def generate(
    request: GenerationRequest,
    generator: Any = Depends(get_generator)
):
    """
    Generate a text response based on the provided context and chat history.
    """
    try:
        chat_history = [(msg.role, msg.content) for msg in request.messages[:-1]]
        user_input = request.messages[-1].content

        # Extract or set defaults for additional arguments
        config = request.config or GenerationConfig()
        model_kwargs = {
            "temperature": config.temperature if hasattr(config, "temperature") else 0.7,
            "max_new_tokens": config.max_new_tokens if hasattr(config, "max_new_tokens") else 100,
            # Add other model kwargs as needed
        }
        
        # Explicitly pass additional required arguments
        response = await asyncio.to_thread(
            generator.generate_with_context,
            context=request.context or "",
            user_input=user_input,
            chat_history=chat_history,
            model_kwargs=model_kwargs,
            max_history_turns=config.max_history_turns if hasattr(config, "max_history_turns") else 3,
            strategy=config.strategy if hasattr(config, "strategy") else "default",
            num_samples=config.num_samples if hasattr(config, "num_samples") else 5,
            depth=config.depth if hasattr(config, "depth") else 3,
            breadth=config.breadth if hasattr(config, "breadth") else 2,
        )

        return GenerationResponse(
            id=str(uuid.uuid4()),
            content=response
        )
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))

@app.websocket("/generate/stream")
async def generate_stream(
    websocket: WebSocket,
    generator: Any = Depends(get_generator)
):
    """
    Stream generated text tokens over a WebSocket connection.
    
    The stream sends JSON messages with the following format:
    - During generation: {"token": "generated_token", "finished": false}
    - End of generation: {"token": "", "finished": true}
    - Error: {"error": "error_message"}
    """
    await websocket.accept()
    
    try:
        while True:
            request_data = await websocket.receive_text()
            request = GenerationRequest.parse_raw(request_data)
            
            chat_history = [(msg.role, msg.content) for msg in request.messages[:-1]]
            user_input = request.messages[-1].content
            
            config = request.config or GenerationConfig()
            
            async for token in generator.generate_stream(
                prompt=generator.prompt_builder.format(
                    context=request.context or "",
                    user_input=user_input,
                    chat_history=chat_history
                ),
                config=config
            ):
                await websocket.send_text(json.dumps({
                    "token": token,
                    "finished": False
                }))
            
            await websocket.send_text(json.dumps({
                "token": "",
                "finished": True
            }))
            
    except Exception as e:
        await websocket.send_text(json.dumps({
            "error": str(e)
        }))
    finally:
        await websocket.close()

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=8000)