File size: 30,669 Bytes
022a8c8 f11c554 022a8c8 e1bf1f2 5c0fd51 e1bf1f2 5c0fd51 022a8c8 f11c554 4278cab 457a598 e1bf1f2 457a598 4278cab 457a598 4267e89 457a598 4278cab 457a598 4278cab 457a598 4278cab 4267e89 457a598 4278cab 457a598 4278cab 457a598 4278cab 457a598 4278cab 457a598 4278cab 457a598 4278cab 457a598 e1bf1f2 457a598 f11c554 457a598 26a4f28 b6c97f4 457a598 4278cab 457a598 4278cab 457a598 4af2f8e 457a598 e96e53f 5146319 e96e53f 457a598 4267e89 457a598 3b677f6 457a598 3b677f6 457a598 4267e89 457a598 4267e89 457a598 4278cab 4267e89 457a598 4278cab 457a598 4267e89 457a598 4278cab 4267e89 457a598 4267e89 457a598 4267e89 457a598 4267e89 457a598 4267e89 457a598 e1bf1f2 4267e89 457a598 4278cab 457a598 b6c97f4 c643a72 b6c97f4 457a598 26a4f28 4267e89 26a4f28 4267e89 26a4f28 4267e89 b87c2b6 457a598 3455289 457a598 ca508ba 4267e89 ca508ba 4267e89 457a598 e96e53f d2106c5 4267e89 3455289 f5cff4e 3455289 9296210 3455289 d2106c5 3455289 d2106c5 457a598 4278cab 457a598 9f36b00 4278cab 457a598 4278cab 457a598 4278cab 457a598 4278cab 457a598 9f36b00 4278cab 457a598 314cc61 87b4648 457a598 4278cab 9f36b00 457a598 4278cab 9f36b00 457a598 9f36b00 457a598 4278cab 457a598 9f36b00 4278cab 4279e53 457a598 4279e53 4278cab 4279e53 4278cab 4279e53 4278cab 4279e53 4278cab 9f36b00 4278cab 457a598 4278cab 9f36b00 4278cab 457a598 4278cab 9296210 4278cab 457a598 4278cab 9f36b00 4278cab 9f36b00 457a598 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 |
from langfuse import Langfuse
from langfuse.decorators import observe, langfuse_context
from config.config import settings
import os
# Initialize Langfuse
os.environ["LANGFUSE_PUBLIC_KEY"] = "pk-lf-9f2c32d2-266f-421d-9b87-51377f0a268c"
os.environ["LANGFUSE_SECRET_KEY"] = "sk-lf-229e10c5-6210-4a4b-a432-0f17bc66e56c"
os.environ["LANGFUSE_HOST"] = "https://chris4k-langfuse-template-space.hf.space" # 🇪🇺 EU region
try:
langfuse = Langfuse()
except Exception as e:
print("Langfuse Offline")
# model_manager.py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from llama_cpp import Llama
from typing import Optional, Dict
import logging
from functools import lru_cache
from config.config import GenerationConfig, ModelConfig
class ModelManager:
def __init__(self, device: Optional[str] = None):
self.logger = logging.getLogger(__name__)
self.device = device or ("cuda" if torch.cuda.is_available() else "cpu")
self.models: Dict[str, Any] = {}
self.tokenizers: Dict[str, Any] = {}
@observe()
def load_model(self, model_id: str, model_path: str, model_type: str, config: ModelConfig) -> None:
"""Load a model with specified configuration."""
try:
##could be differnt models, so we can use a factory pattern to load the correct model - textgen, llama, gguf, text2video, text2image etc.
if model_type == "llama":
self.tokenizers[model_id] = AutoTokenizer.from_pretrained(
model_path,
padding_side='left',
trust_remote_code=True,
**config.tokenizer_kwargs
)
if self.tokenizers[model_id].pad_token is None:
self.tokenizers[model_id].pad_token = self.tokenizers[model_id].eos_token
self.models[model_id] = AutoModelForCausalLM.from_pretrained(
model_path,
device_map="auto",
trust_remote_code=True,
**config.model_kwargs
)
elif model_type == "gguf":
#TODO load the model first from the cache, if not found load the model and save it in the cache
#from huggingface_hub import hf_hub_download
#prm_model_path = hf_hub_download(
# repo_id="tensorblock/Llama3.1-8B-PRM-Mistral-Data-GGUF",
# filename="Llama3.1-8B-PRM-Mistral-Data-Q4_K_M.gguf"
#)
self.models[model_id] = self._load_quantized_model(
model_path,
**config.quantization_kwargs
)
except Exception as e:
self.logger.error(f"Failed to load model {model_id}: {str(e)}")
raise
@observe()
def unload_model(self, model_id: str) -> None:
"""Unload a model and free resources."""
if model_id in self.models:
del self.models[model_id]
if model_id in self.tokenizers:
del self.tokenizers[model_id]
torch.cuda.empty_cache()
def _load_quantized_model(self, model_path: str, **kwargs) -> Llama:
"""Load a quantized GGUF model."""
try:
n_gpu_layers = -1 if torch.cuda.is_available() else 0
model = Llama(
model_path=model_path,
n_ctx=kwargs.get('n_ctx', 2048),
n_batch=kwargs.get('n_batch', 512),
n_gpu_layers=kwargs.get('n_gpu_layers', n_gpu_layers),
verbose=kwargs.get('verbose', False)
)
return model
except Exception as e:
self.logger.error(f"Failed to load GGUF model: {str(e)}")
raise
# cache.py
from functools import lru_cache
from typing import Tuple, Any
# TODO explain howto use the cache
class ResponseCache:
def __init__(self, cache_size: int = 1000):
self.cache_size = cache_size
self._initialize_cache()
def _initialize_cache(self):
@lru_cache(maxsize=self.cache_size)
def cached_response(prompt: str, config_hash: str) -> Tuple[str, float]:
pass
self.get_cached_response = cached_response
def cache_response(self, prompt: str, config: GenerationConfig, response: str, score: float) -> None:
config_hash = hash(str(config.__dict__))
self.get_cached_response(prompt, str(config_hash))
def get_response(self, prompt: str, config: GenerationConfig) -> Optional[Tuple[str, float]]:
config_hash = hash(str(config.__dict__))
return self.get_cached_response(prompt, str(config_hash))
# batch_processor.py
from typing import List, Dict
import asyncio
#TODO explain how to use the batch processor
class BatchProcessor:
def __init__(self, max_batch_size: int = 32, max_wait_time: float = 0.1):
self.max_batch_size = max_batch_size
self.max_wait_time = max_wait_time
self.pending_requests: List[Dict] = []
self.lock = asyncio.Lock()
async def add_request(self, request: Dict) -> Any:
async with self.lock:
self.pending_requests.append(request)
if len(self.pending_requests) >= self.max_batch_size:
return await self._process_batch()
else:
await asyncio.sleep(self.max_wait_time)
if self.pending_requests:
return await self._process_batch()
async def _process_batch(self) -> List[Any]:
batch = self.pending_requests[:self.max_batch_size]
self.pending_requests = self.pending_requests[self.max_batch_size:]
# TODO implement the batch processing logic
return batch
# base_generator.py
from abc import ABC, abstractmethod
from typing import AsyncGenerator, Dict, Any, Optional, List, Tuple
from dataclasses import dataclass
from logging import getLogger
from config.config import GenerationConfig, ModelConfig
class BaseGenerator(ABC):
"""Base class for all generator implementations."""
def __init__(
self,
model_name: str,
device: Optional[str] = None,
default_generation_config: Optional[GenerationConfig] = None,
model_config: Optional[ModelConfig] = None,
cache_size: int = 1000,
max_batch_size: int = 32
):
self.logger = getLogger(__name__)
self.model_manager = ModelManager(device)
self.cache = ResponseCache(cache_size)
self.batch_processor = BatchProcessor(max_batch_size)
self.health_check = HealthCheck()
# self.tokenizer = self.model_manager.tokenizers[model_name]
#self.tokenizer = self.load_tokenizer(llama_model_name) # Add this line to initialize the tokenizer
self.default_config = default_generation_config or GenerationConfig()
self.model_config = model_config or ModelConfig()
@abstractmethod
async def generate_stream(
self,
prompt: str,
config: Optional[GenerationConfig] = None
) -> AsyncGenerator[str, None]:
pass
@abstractmethod
def _get_generation_kwargs(self, config: GenerationConfig) -> Dict[str, Any]:
pass
@abstractmethod
def generate(
self,
prompt: str,
model_kwargs: Dict[str, Any],
strategy: str = "default",
**kwargs
) -> str:
pass
# strategy.py
#TODO UPDATE Paths
from abc import ABC, abstractmethod
from typing import List, Tuple
@observe()
class GenerationStrategy(ABC):
"""Base class for generation strategies."""
@abstractmethod
def generate(self, generator: 'BaseGenerator', prompt: str, model_kwargs: Dict[str, Any], **kwargs) -> str:
pass
class DefaultStrategy(GenerationStrategy):
def generate(self, generator: 'BaseGenerator', prompt: str, model_kwargs: Dict[str, Any], **kwargs) -> str:
input_ids = generator.tokenizer(prompt, return_tensors="pt").input_ids.to(generator.device)
output = generator.model.generate(input_ids, **model_kwargs)
return generator.tokenizer.decode(output[0], skip_special_tokens=True)
@observe()
class MajorityVotingStrategy(GenerationStrategy):
def generate(self, generator: 'BaseGenerator', prompt: str, model_kwargs: Dict[str, Any], num_samples: int = 5, **kwargs) -> str:
outputs = []
for _ in range(num_samples):
input_ids = generator.tokenizer(prompt, return_tensors="pt").input_ids.to(generator.device)
output = generator.model.generate(input_ids, **model_kwargs)
outputs.append(generator.tokenizer.decode(output[0], skip_special_tokens=True))
return max(set(outputs), key=outputs.count)
@observe()
class BestOfN(GenerationStrategy):
def generate(self, generator: 'BaseGenerator', prompt: str, model_kwargs: Dict[str, Any], num_samples: int = 5, **kwargs) -> str:
scored_outputs = []
for _ in range(num_samples):
input_ids = self.llama_tokenizer(prompt, return_tensors="pt").input_ids.to(self.device)
output = self.llama_model.generate(input_ids, **model_kwargs)
response = self.llama_tokenizer.decode(output[0], skip_special_tokens=True)
score = self.prm_model(**self.llama_tokenizer(response, return_tensors="pt").to(self.device)).logits.mean().item()
scored_outputs.append((response, score))
return max(scored_outputs, key=lambda x: x[1])[0]
@observe()
class BeamSearch(GenerationStrategy):
def generate(self, generator: 'BaseGenerator', prompt: str, model_kwargs: Dict[str, Any], num_samples: int = 5, **kwargs) -> str:
input_ids = self.llama_tokenizer(prompt, return_tensors="pt").input_ids.to(self.device)
outputs = self.llama_model.generate(
input_ids,
num_beams=num_samples,
num_return_sequences=num_samples,
**model_kwargs
)
return [self.llama_tokenizer.decode(output, skip_special_tokens=True) for output in outputs]
@observe()
class DVT(GenerationStrategy):
def generate(self, generator: 'BaseGenerator', prompt: str, model_kwargs: Dict[str, Any], num_samples: int = 5, **kwargs) -> str:
results = []
for _ in range(breadth):
input_ids = self.llama_tokenizer(prompt, return_tensors="pt").input_ids.to(self.device)
output = self.llama_model.generate(input_ids, **model_kwargs)
response = self.llama_tokenizer.decode(output[0], skip_special_tokens=True)
score = self.prm_model(**self.llama_tokenizer(response, return_tensors="pt").to(self.device)).logits.mean().item()
results.append((response, score))
for _ in range(depth - 1):
best_responses = sorted(results, key=lambda x: x[1], reverse=True)[:breadth]
for response, _ in best_responses:
input_ids = self.llama_tokenizer(response, return_tensors="pt").input_ids.to(self.device)
output = self.llama_model.generate(input_ids, **model_kwargs)
extended_response = self.llama_tokenizer.decode(output[0], skip_special_tokens=True)
score = self.prm_model(**self.llama_tokenizer(extended_response, return_tensors="pt").to(self.device)).logits.mean().item()
results.append((extended_response, score))
return max(results, key=lambda x: x[1])[0]
@observe()
class COT(GenerationStrategy):
def generate(self, generator: 'BaseGenerator', prompt: str, model_kwargs: Dict[str, Any], num_samples: int = 5, **kwargs) -> str:
#TODO implement the chain of thought strategy
return "Not implemented yet"
@observe()
class ReAct(GenerationStrategy):
def generate(self, generator: 'BaseGenerator', prompt: str, model_kwargs: Dict[str, Any], num_samples: int = 5, **kwargs) -> str:
#TODO implement the ReAct framework
return "Not implemented yet"
# Add other strategy implementations...
# prompt_builder.py
from typing import Protocol, List, Tuple
from transformers import AutoTokenizer
@observe()
class PromptTemplate(Protocol):
"""Protocol for prompt templates."""
def format(self, context: str, user_input: str, chat_history: List[Tuple[str, str]], **kwargs) -> str:
pass
@observe()
class LlamaPromptTemplate:
def format(self, context: str, user_input: str, chat_history: List[Tuple[str, str]], max_history_turns: int = 1) -> str:
system_message = f"Please assist based on the following context: {context}"
prompt = f"<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\n{system_message}<|eot_id|>"
for user_msg, assistant_msg in chat_history[-max_history_turns:]:
prompt += f"<|start_header_id|>user<|end_header_id|>\n\n{user_msg}<|eot_id|>"
prompt += f"<|start_header_id|>assistant<|end_header_id|>\n\n{assistant_msg}<|eot_id|>"
prompt += f"<|start_header_id|>user<|end_header_id|>\n\n{user_input}<|eot_id|>"
prompt += "<|start_header_id|>assistant<|end_header_id|>\n\n"
return prompt
@observe()
class TransformersPromptTemplate:
def __init__(self, model_path: str):
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
def format(self, context: str, user_input: str, chat_history: List[Tuple[str, str]], **kwargs) -> str:
messages = [
{
"role": "system",
"content": f"Please assist based on the following context: {context}",
}
]
for user_msg, assistant_msg in chat_history:
messages.extend([
{"role": "user", "content": user_msg},
{"role": "assistant", "content": assistant_msg}
])
messages.append({"role": "user", "content": user_input})
tokenized_chat = self.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
return tokenized_chat
# health_check.py
import psutil
from dataclasses import dataclass
from typing import Dict, Any
@dataclass
class HealthStatus:
status: str
gpu_memory: Dict[str, float]
cpu_usage: float
ram_usage: float
model_status: Dict[str, str]
class HealthCheck:
@staticmethod
def check_gpu_memory() -> Dict[str, float]:
if torch.cuda.is_available():
return {
f"gpu_{i}": torch.cuda.memory_allocated(i) / 1024**3
for i in range(torch.cuda.device_count())
}
return {}
@staticmethod
def check_system_resources() -> HealthStatus:
return HealthStatus(
status="healthy",
gpu_memory=HealthCheck.check_gpu_memory(),
cpu_usage=psutil.cpu_percent(),
ram_usage=psutil.virtual_memory().percent,
#TODO add more system resources like disk, network, etc.
model_status={} # To be filled by the model manager
)
# llama_generator.py
from config.config import GenerationConfig, ModelConfig
@observe()
class LlamaGenerator(BaseGenerator):
def __init__(
self,
llama_model_name: str,
prm_model_path: str,
device: Optional[str] = None,
default_generation_config: Optional[GenerationConfig] = None,
model_config: Optional[ModelConfig] = None,
cache_size: int = 1000,
max_batch_size: int = 32,
# self.tokenizer = self.load_tokenizer(llama_model_name)
# self.tokenizer = self.load_tokenizer(llama_model_name) # Add this line to initialize the tokenizer
):
@observe()
def load_model(self, model_name: str):
# Code to load your model, e.g., Hugging Face's transformers library
from transformers import AutoModelForCausalLM
return AutoModelForCausalLM.from_pretrained(model_name)
@observe()
def load_tokenizer(self, model_name: str):
# Load the tokenizer associated with the model
from transformers import AutoTokenizer
return AutoTokenizer.from_pretrained(model_name)
self.tokenizer = load_tokenizer(llama_model_name) # Add this line to initialize the tokenizer
super().__init__(
llama_model_name,
device,
default_generation_config,
model_config,
cache_size,
max_batch_size
)
# Initialize models
self.model_manager.load_model(
"llama",
llama_model_name,
"llama",
self.model_config
)
self.model_manager.load_model(
"prm",
prm_model_path,
"gguf",
self.model_config
)
self.prompt_builder = LlamaPromptTemplate()
self._init_strategies()
def _init_strategies(self):
self.strategies = {
"default": DefaultStrategy(),
"majority_voting": MajorityVotingStrategy(),
"best_of_n": BestOfN(),
"beam_search": BeamSearch(),
"dvts": DVT(),
}
def _get_generation_kwargs(self, config: GenerationConfig) -> Dict[str, Any]:
"""Get generation kwargs based on config."""
return {
key: getattr(config, key)
for key in [
"max_new_tokens",
"temperature",
"top_p",
"top_k",
"repetition_penalty",
"length_penalty",
"do_sample"
]
if hasattr(config, key)
}
@observe()
def generate_stream (self):
return " NOt implememnted yet "
@observe()
def generate(
self,
prompt: str,
model_kwargs: Dict[str, Any],
strategy: str = "default",
**kwargs
) -> str:
"""
Generate text based on a given strategy.
Args:
prompt (str): Input prompt for text generation.
model_kwargs (Dict[str, Any]): Additional arguments for model generation.
strategy (str): The generation strategy to use (default: "default").
**kwargs: Additional arguments passed to the strategy.
Returns:
str: Generated text response.
Raises:
ValueError: If the specified strategy is not available.
"""
# Validate that the strategy exists
if strategy not in self.strategies:
raise ValueError(f"Unknown strategy: {strategy}. Available strategies are: {list(self.strategies.keys())}")
# Extract `generator` from kwargs if it exists to prevent duplication
kwargs.pop("generator", None)
# Call the selected strategy with the provided arguments
return self.strategies[strategy].generate(
generator=self, # The generator instance
prompt=prompt, # The input prompt
model_kwargs=model_kwargs, # Arguments for the model
**kwargs # Any additional strategy-specific arguments
)
@observe()
def generate_with_context(
self,
context: str,
user_input: str,
chat_history: List[Tuple[str, str]],
model_kwargs: Dict[str, Any],
max_history_turns: int = 3,
strategy: str = "default",
num_samples: int = 5,
depth: int = 3,
breadth: int = 2,
) -> str:
"""Generate a response using context and chat history.
Args:
context (str): Context for the conversation
user_input (str): Current user input
chat_history (List[Tuple[str, str]]): List of (user, assistant) message pairs
model_kwargs (dict): Additional arguments for model.generate()
max_history_turns (int): Maximum number of history turns to include
strategy (str): Generation strategy
num_samples (int): Number of samples for applicable strategies
depth (int): Depth for DVTS strategy
breadth (int): Breadth for DVTS strategy
Returns:
str: Generated response
"""
prompt = self.prompt_builder.format(
context,
user_input,
chat_history,
max_history_turns
)
return self.generate(
generator=self,
prompt=prompt,
model_kwargs=model_kwargs,
strategy=strategy,
num_samples=num_samples,
depth=depth,
breadth=breadth
)
def check_health(self) -> HealthStatus:
"""Check the health status of the generator."""
return self.health_check.check_system_resources() # TODO add model status
###################
#################
from fastapi import FastAPI, HTTPException, BackgroundTasks, WebSocket, Depends
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import StreamingResponse
from pydantic import BaseModel, Field, ConfigDict
from typing import List, Optional, Dict, Any, AsyncGenerator
import asyncio
import uuid
from datetime import datetime
import json
from huggingface_hub import hf_hub_download
from contextlib import asynccontextmanager
class ChatMessage(BaseModel):
"""A single message in the chat history."""
role: str = Field(
...,
description="Role of the message sender",
examples=["user", "assistant"]
)
content: str = Field(..., description="Content of the message")
model_config = ConfigDict(
json_schema_extra={
"example": {
"role": "user",
"content": "What is the capital of France?"
}
}
)
class GenerationConfig(BaseModel):
"""Configuration for text generation."""
temperature: float = Field(
0.7,
ge=0.0,
le=2.0,
description="Controls randomness in the output. Higher values (e.g., 0.8) make the output more random, lower values (e.g., 0.2) make it more focused and deterministic."
)
max_new_tokens: int = Field(
100,
ge=1,
le=2048,
description="Maximum number of tokens to generate"
)
top_p: float = Field(
0.9,
ge=0.0,
le=1.0,
description="Nucleus sampling parameter. Only tokens with cumulative probability < top_p are considered."
)
top_k: int = Field(
50,
ge=0,
description="Only consider the top k tokens for text generation"
)
strategy: str = Field(
"default",
description="Generation strategy to use",
examples=["default", "majority_voting", "best_of_n", "beam_search", "dvts"]
)
num_samples: int = Field(
5,
ge=1,
le=10,
description="Number of samples to generate (used in majority_voting and best_of_n strategies)"
)
class GenerationRequest(BaseModel):
"""Request model for text generation."""
context: Optional[str] = Field(
None,
description="Additional context to guide the generation",
examples=["You are a helpful assistant skilled in Python programming"]
)
messages: List[ChatMessage] = Field(
...,
description="Chat history including the current message",
min_items=1
)
config: Optional[GenerationConfig] = Field(
None,
description="Generation configuration parameters"
)
stream: bool = Field(
False,
description="Whether to stream the response token by token"
)
model_config = ConfigDict(
json_schema_extra={
"example": {
"context": "You are a helpful assistant",
"messages": [
{"role": "user", "content": "What is the capital of France?"}
],
"config": {
"temperature": 0.7,
"max_new_tokens": 100
},
"stream": False
}
}
)
class GenerationResponse(BaseModel):
"""Response model for text generation."""
id: str = Field(..., description="Unique generation ID")
content: str = Field(..., description="Generated text content")
created_at: datetime = Field(
default_factory=datetime.now,
description="Timestamp of generation"
)
# Model and cache management
async def get_prm_model_path():
"""Download and cache the PRM model."""
return await asyncio.to_thread(
hf_hub_download,
repo_id="tensorblock/Llama3.1-8B-PRM-Mistral-Data-GGUF",
filename="Llama3.1-8B-PRM-Mistral-Data-Q4_K_M.gguf"
)
# Initialize generator globally
generator = None
@asynccontextmanager
async def lifespan(app: FastAPI):
"""Lifecycle management for the FastAPI application."""
# Startup: Initialize generator
global generator
try:
prm_model_path = await get_prm_model_path()
generator = LlamaGenerator(
llama_model_name="meta-llama/Llama-3.2-1B-Instruct",
prm_model_path=prm_model_path,
default_generation_config=GenerationConfig(
max_new_tokens=100,
temperature=0.7
)
)
yield
finally:
# Shutdown: Clean up resources
if generator:
await asyncio.to_thread(generator.cleanup)
# FastAPI application
app = FastAPI(
title="Inference Deluxe Service",
description="""
A service for generating text using LLaMA models with various generation strategies.
Generation Strategies:
- default: Standard autoregressive generation
- majority_voting: Generates multiple responses and selects the most common one
- best_of_n: Generates multiple responses and selects the best based on a scoring metric
- beam_search: Uses beam search for more coherent text generation
- dvts: Dynamic vocabulary tree search for efficient generation
""",
version="1.0.0",
lifespan=lifespan
)
# CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
async def get_generator():
"""Dependency to get the generator instance."""
if not generator:
raise HTTPException(
status_code=503,
detail="Generator not initialized"
)
return generator
@app.post(
"/generate",
response_model=GenerationResponse,
tags=["generation"],
summary="Generate text response",
response_description="Generated text with unique identifier"
)
async def generate(
request: GenerationRequest,
generator: Any = Depends(get_generator)
):
"""
Generate a text response based on the provided context and chat history.
"""
try:
chat_history = [(msg.role, msg.content) for msg in request.messages[:-1]]
user_input = request.messages[-1].content
# Extract or set defaults for additional arguments
config = request.config or GenerationConfig()
model_kwargs = {
"temperature": config.temperature if hasattr(config, "temperature") else 0.7,
"max_new_tokens": config.max_new_tokens if hasattr(config, "max_new_tokens") else 100,
# Add other model kwargs as needed
}
# Explicitly pass additional required arguments
response = await asyncio.to_thread(
generator.generate_with_context,
context=request.context or "",
user_input=user_input,
chat_history=chat_history,
model_kwargs=model_kwargs,
max_history_turns=config.max_history_turns if hasattr(config, "max_history_turns") else 3,
strategy=config.strategy if hasattr(config, "strategy") else "default",
num_samples=config.num_samples if hasattr(config, "num_samples") else 5,
depth=config.depth if hasattr(config, "depth") else 3,
breadth=config.breadth if hasattr(config, "breadth") else 2,
)
return GenerationResponse(
id=str(uuid.uuid4()),
content=response
)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.websocket("/generate/stream")
async def generate_stream(
websocket: WebSocket,
generator: Any = Depends(get_generator)
):
"""
Stream generated text tokens over a WebSocket connection.
The stream sends JSON messages with the following format:
- During generation: {"token": "generated_token", "finished": false}
- End of generation: {"token": "", "finished": true}
- Error: {"error": "error_message"}
"""
await websocket.accept()
try:
while True:
request_data = await websocket.receive_text()
request = GenerationRequest.parse_raw(request_data)
chat_history = [(msg.role, msg.content) for msg in request.messages[:-1]]
user_input = request.messages[-1].content
config = request.config or GenerationConfig()
async for token in generator.generate_stream(
prompt=generator.prompt_builder.format(
context=request.context or "",
user_input=user_input,
chat_history=chat_history
),
config=config
):
await websocket.send_text(json.dumps({
"token": token,
"finished": False
}))
await websocket.send_text(json.dumps({
"token": "",
"finished": True
}))
except Exception as e:
await websocket.send_text(json.dumps({
"error": str(e)
}))
finally:
await websocket.close()
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)
|