File size: 2,553 Bytes
cae3cb9
6663cb2
018fb30
e5633a7
 
018fb30
e5633a7
018fb30
f7493dd
037c950
66fc16c
e5633a7
 
 
 
 
1f5e9cb
037c950
008f20f
037c950
 
 
018fb30
 
 
38e2fac
cbed288
c7297e1
f8472cb
c7297e1
18cb8f3
142d17f
 
 
 
ea07eae
 
 
 
 
 
 
 
 
 
 
 
 
 
e181ae7
ea07eae
 
 
f8472cb
037c950
ea07eae
142d17f
68b31c9
 
 
 
 
018fb30
68b31c9
037c950
 
68b31c9
 
018fb30
 
037c950
 
018fb30
 
 
42d7c62
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import os 
#!pip install -q gradio langchain pypdf chromadb
import gradio as gr
from dotenv import load_dotenv
from PyPDF2 import PdfReader
from langchain.vectorstores import Chroma
from langchain.vectorstores import FAISS
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import HuggingFaceInferenceAPIEmbeddings
from langchain.embeddings import HuggingFaceBgeEmbeddings
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from htmlTemplates import css, bot_template, user_template
from langchain.llms import HuggingFaceHub


# Use Hugging Face Inference API embeddings
inference_api_key = os.environ['HF']
api_hf_embeddings = HuggingFaceInferenceAPIEmbeddings(
    api_key=inference_api_key,
    model_name="sentence-transformers/all-MiniLM-l6-v2"
)

# Load and process the PDF files
loader = PyPDFLoader("./new_papers/ALiBi.pdf")
documents = loader.load()
print("-----------")
print(documents[0])
print("-----------")

# Split the documents into chunks and embed them using the HfApiEmbeddingTool
text_splitter = CharacterTextSplitter(chunk_size=100, chunk_overlap=0)
vdocuments = text_splitter.split_documents(documents)




model = "BAAI/bge-base-en-v1.5"
encode_kwargs = {
    "normalize_embeddings": True
}  # set True to compute cosine similarity
embeddings = HuggingFaceBgeEmbeddings(
    model_name=model, encode_kwargs=encode_kwargs, model_kwargs={"device": "cpu"}
)
api_db = FAISS.from_texts(texts=vdocuments, embedding=embeddings)
api_db.as_retriever.similarity("What is ICD?")


# Extract the embedding arrays from the PDF documents
#embeddings = []
#for doc in vdocuments:
#    embeddings.extend(api_hf_embeddings.get_embeddings(doc))

# Create Chroma vector store for API embeddings
#api_db = Chroma.from_documents(vdocuments, HfApiEmbeddingRetriever, collection_name="api-collection")

# Define the PDF retrieval function
def pdf_retrieval(query):
    # Run the query through the retriever
    response = api_db.similarity_search(query)
    return response

# Create Gradio interface for the API retriever
# Create Gradio interface for the API retriever
api_tool = gr.Interface(
    fn=pdf_retrieval,
    inputs=[gr.Textbox()],
    outputs=gr.Textbox(),
    live=True,
    title="API PDF Retrieval Tool",
    description="This tool indexes PDF documents and retrieves relevant answers based on a given query (HF Inference API Embeddings).",
)

# Launch the Gradio interface
api_tool.launch()