Spaces:
Runtime error
Runtime error
File size: 2,010 Bytes
4bcd70b a75fe7e e4acaca 60d002b e4acaca a75fe7e e4acaca a75fe7e e4acaca a75fe7e e4acaca a75fe7e e4acaca a75fe7e e4acaca a75fe7e 60d002b a75fe7e 60d002b a75fe7e 60d002b a75fe7e 60d002b a75fe7e e4acaca a75fe7e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
import os
from fastapi import FastAPI, UploadFile, File
from fastapi.responses import JSONResponse
from PIL import Image
import torch
import torchvision.transforms as transforms
from utils import BrainTumorModel, GliomaStageModel
app = FastAPI()
# Load models (updated to local .pth files)
btd_model_path = "brain_tumor_model.pth"
glioma_model_path = "glioma_stage_model.pth"
# Initialize and load Brain Tumor Detection Model
btd_model = BrainTumorModel()
btd_model.load_state_dict(torch.load(btd_model_path, map_location=torch.device('cpu')))
btd_model.eval()
# Initialize and load Glioma Stage Detection Model
glioma_model = GliomaStageModel()
glioma_model.load_state_dict(torch.load(glioma_model_path, map_location=torch.device('cpu')))
glioma_model.eval()
# Define preprocessing
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
])
@app.post("/predict/")
async def predict(file: UploadFile = File(...)):
try:
image = Image.open(file.file).convert("RGB")
image = transform(image).unsqueeze(0)
with torch.no_grad():
output = btd_model(image)
predicted = torch.argmax(output, dim=1).item()
classes = ['No Tumor', 'Pituitary', 'Meningioma', 'Glioma']
result = classes[predicted]
return JSONResponse(content={"prediction": result})
except Exception as e:
return JSONResponse(content={"error": str(e)})
@app.post("/glioma-stage/")
async def glioma_stage(file: UploadFile = File(...)):
try:
image = Image.open(file.file).convert("RGB")
image = transform(image).unsqueeze(0)
with torch.no_grad():
output = glioma_model(image)
predicted = torch.argmax(output, dim=1).item()
stages = ['Stage 1', 'Stage 2', 'Stage 3', 'Stage 4']
result = stages[predicted]
return JSONResponse(content={"glioma_stage": result})
except Exception as e:
return JSONResponse(content={"error": str(e)})
|