File size: 1,200 Bytes
5f0082d
 
 
0014786
 
95c923f
7a29178
 
 
 
 
0014786
 
9e0b2ba
7a29178
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e0b2ba
8861ba7
 
c5f9302
9e0b2ba
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
from keras.models import load_model
from PIL import Image, ImageOps
import numpy as np
import gradio as gr


# Load the model
model = load_model('keras_model.h5')



def greet(name):
    return "Hello " + name + "!!"

def predict(img):  

# Create the array of the right shape to feed into the keras model
# The 'length' or number of images you can put into the array is
# determined by the first position in the shape tuple, in this case 1.
data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
# Replace this with the path to your image
image = Image.open('<IMAGE_PATH>')
#resize the image to a 224x224 with the same strategy as in TM2:
#resizing the image to be at least 224x224 and then cropping from the center
size = (224, 224)
image = ImageOps.fit(image, size, Image.ANTIALIAS)

#turn the image into a numpy array
image_array = np.asarray(image)
# Normalize the image
normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1
# Load the image into the array
data[0] = normalized_image_array

# run the inference
prediction = model.predict(data)
print(prediction)
    return prediction
    
    
iface = gr.Interface(fn=predict, inputs="image", outputs="text")
iface.launch()