File size: 15,979 Bytes
277ab09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d89fbb
 
 
 
 
 
 
277ab09
 
 
 
 
 
 
 
 
 
71b342f
277ab09
 
 
 
71b342f
 
277ab09
 
 
 
 
 
71b342f
 
277ab09
71b342f
277ab09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71b342f
277ab09
 
 
 
 
 
 
 
 
 
 
71b342f
277ab09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
import streamlit as st
from transformers import AutoTokenizer, AutoModelForTokenClassification
import time
import json
import pandas as pd
from datetime import datetime
import os
from typing import List, Dict, Tuple
import re

# Constants
MODELS = {
    "GolemPII XLM-RoBERTa v1": "CordwainerSmith/GolemPII-xlm-roberta-v1",
}


ENTITY_COLORS = {
    "PHONE_NUM": "#FF9999",
    "ID_NUM": "#99FF99",
    "CC_NUM": "#9999FF",
    "BANK_ACCOUNT_NUM": "#FFFF99",
    "FIRST_NAME": "#FF99FF",
    "LAST_NAME": "#99FFFF",
    "CITY": "#FFB366",
    "STREET": "#B366FF",
    "POSTAL_CODE": "#66FFB3",
    "EMAIL": "#66B3FF",
    "DATE": "#FFB3B3",
    "CC_PROVIDER": "#B3FFB3",
}

EXAMPLE_SENTENCES = [
    "砖诐 诪诇讗: 转诇诪讛 讗专讬讗诇讬 诪住驻专 转注讜讚转 讝讛讜转: 61453324-8 转讗专讬讱 诇讬讚讛: 15/09/1983 讻转讜讘转:  讗专诇讜讝讜专讜讘 22  驻转讞 转拽讜讜讛 诪讬拽讜讚 2731711 讗讬诪讬讬诇: [email protected] 讟诇驻讜谉: 054-8884771  讘驻讙讬砖讛 讝讜 谞讚讜谞讜 驻转专讜谞讜转 讟讻谞讜诇讜讙讬讬诐 讞讚砖谞讬讬诐 诇砖讬驻讜专 转讛诇讬讻讬 注讘讜讚讛. 讛诪砖转转祝 讬转讘拽砖 诇讛爪讬讙 诪爪讙转 讘谞讜砖讗 讘驻讙讬砖讛 讛讘讗讛 讗砖专 砖讬诇诐 讘 5326-1003-5299-5478 诪住讟专拽讗专讚 注诐 讛讜专讗转 拽讘注 诇 11-77-352300",
]

MODEL_DETAILS = {
    "name": "GolemPII - Hebrew PII Detection Model CordwainerSmith/GolemPII-v7-full",
    "description": "This on-premise PII model is designed to automatically identify and mask sensitive information (PII) within Hebrew text data. It has been trained to recognize a wide range of PII entities, including names, addresses, phone numbers, financial information, and more.",
    "base_model": "microsoft/mdeberta-v3-base",
    "training_data": "Custom Hebrew PII dataset (size not specified)",
    "detected_pii_entities": [
        "FIRST_NAME",
        "LAST_NAME",
        "STREET",
        "CITY",
        "PHONE_NUM",
        "EMAIL",
        "ID_NUM",
        "BANK_ACCOUNT_NUM",
        "CC_NUM",
        "CC_PROVIDER",
        "DATE",
        "POSTAL_CODE",
    ],
    "training_details": {
        "Training epochs": "5",
        "Batch size": "32",
        "Learning rate": "5e-5",
        "Weight decay": "0.01",
        "Training speed": "~2.19 it/s",
        "Total training time": "2:08:26",
    },
}


class PIIMaskingModel:
    def __init__(self, model_name: str):
        self.model_name = model_name
        hf_token = st.secrets["HF_TOKEN"]  # Retrieve the token from secrets
        self.tokenizer = AutoTokenizer.from_pretrained(
            model_name, use_auth_token=hf_token
        )
        self.model = AutoModelForTokenClassification.from_pretrained(
            model_name, use_auth_token=hf_token
        )

    def process_text(
        self, text: str
    ) -> Tuple[str, float, str, List[str], List[str], List[Dict]]:
        start_time = time.time()

        tokenized_inputs = self.tokenizer(
            text,
            truncation=True,
            padding=False,
            return_tensors="np",  # Return NumPy arrays for CPU
            return_offsets_mapping=True,
            add_special_tokens=True,
        )

        input_ids = tokenized_inputs.input_ids
        attention_mask = tokenized_inputs.attention_mask
        offset_mapping = tokenized_inputs["offset_mapping"][0].tolist()

        # Handle special tokens
        offset_mapping[0] = None  # <s> token
        offset_mapping[-1] = None  # </s> token

        # No need for torch.no_grad() as we are not using gradients
        outputs = self.model(input_ids=input_ids, attention_mask=attention_mask)

        predictions = outputs.logits.argmax(dim=-1)  # No need to move to CPU
        predicted_labels = [
            self.model.config.id2label[label_id] for label_id in predictions[0]
        ]
        tokens = self.tokenizer.convert_ids_to_tokens(input_ids[0])

        masked_text, colored_text, privacy_masks = self.mask_pii_in_sentence(
            tokens, predicted_labels, text, offset_mapping
        )
        processing_time = time.time() - start_time

        return (
            masked_text,
            processing_time,
            colored_text,
            tokens,
            predicted_labels,
            privacy_masks,
        )

    def _find_entity_span(
        self,
        i: int,
        labels: List[str],
        tokens: List[str],
        offset_mapping: List[Tuple[int, int]],
    ) -> Tuple[int, str, int]:
        """Find the end index and entity type for a span starting at index i"""
        current_entity = labels[i][2:] if labels[i].startswith("B-") else labels[i][2:]
        j = i + 1
        last_valid_end = offset_mapping[i][1] if offset_mapping[i] else None

        while j < len(tokens):
            if offset_mapping[j] is None:
                j += 1
                continue

            next_label = labels[j]

            # Stop if we hit a new B- tag (except for non-spaced tokens)
            if next_label.startswith("B-") and tokens[j].startswith(" "):
                break

            # Stop if we hit a different entity type in I- tags
            if next_label.startswith("I-") and next_label[2:] != current_entity:
                break

            # Continue if it's a continuation of the same entity
            if next_label.startswith("I-") and next_label[2:] == current_entity:
                last_valid_end = offset_mapping[j][1]
                j += 1
            # Continue if it's a non-spaced B- token
            elif next_label.startswith("B-") and not tokens[j].startswith(" "):
                last_valid_end = offset_mapping[j][1]
                j += 1
            else:
                break

        return j, current_entity, last_valid_end

    def mask_pii_in_sentence(
        self,
        tokens: List[str],
        labels: List[str],
        original_text: str,
        offset_mapping: List[Tuple[int, int]],
    ) -> Tuple[str, str, List[Dict]]:
        privacy_masks = []
        current_pos = 0
        masked_text_parts = []
        colored_text_parts = []

        i = 0
        while i < len(tokens):
            if offset_mapping[i] is None:  # Skip special tokens
                i += 1
                continue

            current_label = labels[i]

            if current_label.startswith(("B-", "I-")):
                start_char = offset_mapping[i][0]

                # Find the complete entity span
                next_pos, entity_type, last_valid_end = self._find_entity_span(
                    i, labels, tokens, offset_mapping
                )

                # Add any text before the entity
                if current_pos < start_char:
                    text_before = original_text[current_pos:start_char]
                    masked_text_parts.append(text_before)
                    colored_text_parts.append(text_before)

                # Extract and mask the entity
                entity_value = original_text[start_char:last_valid_end]
                mask = self._get_mask_for_entity(entity_type)

                # Add to privacy masks
                privacy_masks.append(
                    {
                        "label": entity_type,
                        "start": start_char,
                        "end": last_valid_end,
                        "value": entity_value,
                        "label_index": len(privacy_masks) + 1,
                    }
                )

                # Add masked text
                masked_text_parts.append(mask)

                # Add colored text
                color = ENTITY_COLORS.get(entity_type, "#CCCCCC")
                colored_text_parts.append(
                    f'<span style="background-color: {color}; padding: 2px; border-radius: 3px;">{mask}</span>'
                )

                current_pos = last_valid_end
                i = next_pos
            else:
                if offset_mapping[i] is not None:
                    start_char = offset_mapping[i][0]
                    end_char = offset_mapping[i][1]

                    # Add any text for this token
                    if current_pos < end_char:
                        text_chunk = original_text[current_pos:end_char]
                        masked_text_parts.append(text_chunk)
                        colored_text_parts.append(text_chunk)
                        current_pos = end_char
                i += 1

        # Add any remaining text
        if current_pos < len(original_text):
            remaining_text = original_text[current_pos:]
            masked_text_parts.append(remaining_text)
            colored_text_parts.append(remaining_text)

        return ("".join(masked_text_parts), "".join(colored_text_parts), privacy_masks)

    def _get_mask_for_entity(self, entity_type: str) -> str:
        """Get the mask text for a given entity type"""
        return {
            "PHONE_NUM": "[讟诇驻讜谉]",
            "ID_NUM": "[转.讝]",
            "CC_NUM": "[讻专讟讬住 讗砖专讗讬]",
            "BANK_ACCOUNT_NUM": "[讞砖讘讜谉 讘谞拽]",
            "FIRST_NAME": "[砖诐 驻专讟讬]",
            "LAST_NAME": "[砖诐 诪砖驻讞讛]",
            "CITY": "[注讬专]",
            "STREET": "[专讞讜讘]",
            "POSTAL_CODE": "[诪讬拽讜讚]",
            "EMAIL": "[讗讬诪讬讬诇]",
            "DATE": "[转讗专讬讱]",
            "CC_PROVIDER": "[住驻拽 讻专讟讬住 讗砖专讗讬]",
            "BANK": "[讘谞拽]",
        }.get(entity_type, f"[{entity_type}]")


def save_results_to_file(results: Dict):
    """
    Save processing results to a JSON file
    """
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    filename = f"pii_masking_results_{timestamp}.json"

    with open(filename, "w", encoding="utf-8") as f:
        json.dump(results, f, ensure_ascii=False, indent=2)

    return filename


def main():
    st.set_page_config(layout="wide")
    st.title("馃椏 GolemPII: Hebrew PII Masking Application 馃椏")

    # Add CSS styles
    st.markdown(
        """
    <style>
        .rtl { direction: rtl; text-align: right; }
        .entity-legend { padding: 5px; margin: 2px; border-radius: 3px; display: inline-block; }
        .masked-text { 
            direction: rtl; 
            text-align: right; 
            line-height: 2; 
            padding: 10px; 
            background-color: #f6f8fa; 
            border-radius: 5px; 
            color: black;             
            white-space: pre-wrap;
        }
        /* Red headers for sections */
        .main h3 {
            color: #d73a49;
            margin-bottom: 10px;
        }
        /* Styles for the model details sidebar */
        .model-details-sidebar h2 {
            margin-top: 0;
        }
        .model-details-sidebar table {
            width: 100%;
            border-collapse: collapse;
        }
        .model-details-sidebar td, .model-details-sidebar th {
            padding: 8px;
            border: 1px solid #ddd;
            text-align: left;
        }
    </style>
    """,
        unsafe_allow_html=True,
    )

    # Sidebar configuration
    st.sidebar.header("Configuration")
    selected_model = st.sidebar.selectbox("Select Model", list(MODELS.keys()))
    show_json = st.sidebar.checkbox("Show JSON Output", value=True)
    run_all_models = st.sidebar.checkbox("Run All Models")

    # Display Model Details in Sidebar
    st.sidebar.markdown(
        f"""
        <div class="model-details-sidebar">
            <h2>Model Details: {MODEL_DETAILS['name']}</h2>
            <p>{MODEL_DETAILS['description']}</p>
            <table>
                <tr><td>Base Model:</td><td>{MODEL_DETAILS['base_model']}</td></tr>
                <tr><td>Training Data:</td><td>{MODEL_DETAILS['training_data']}</td></tr>            
            </table>
            <h3>Detected PII Entities</h3>
            <ul>
                {" ".join([f'<li><span class="entity-badge" style="background-color: {ENTITY_COLORS.get(entity, "#CCCCCC")}; padding: 3px 5px; border-radius: 3px; margin-right: 5px;">{entity}</span></li>' for entity in MODEL_DETAILS['detected_pii_entities']])}
            </ul>
        </div>
        """,
        unsafe_allow_html=True,
    )

    # Text input
    text_input = st.text_area(
        "Enter text to mask (separate multiple texts with commas):",
        value="\n".join(EXAMPLE_SENTENCES),
        height=200,
    )

    # Process button
    if st.button("Process Text"):
        texts = [text.strip() for text in text_input.split(",") if text.strip()]

        if run_all_models:
            all_results = {}
            progress_bar = st.progress(0)

            for idx, (model_name, model_path) in enumerate(MODELS.items()):
                st.subheader(f"Results for {model_name}")
                model = PIIMaskingModel(model_path)
                model_results = {}

                for text_idx, text in enumerate(texts):
                    (
                        masked_text,
                        processing_time,
                        colored_text,
                        tokens,
                        predicted_labels,
                        privacy_masks,
                    ) = model.process_text(text)
                    model_results[f"text_{text_idx+1}"] = {
                        "original": text,
                        "masked": masked_text,
                        "processing_time": processing_time,
                        "privacy_mask": privacy_masks,
                        "span_labels": [
                            [m["start"], m["end"], m["label"]] for m in privacy_masks
                        ],
                    }

                all_results[model_name] = model_results
                progress_bar.progress((idx + 1) / len(MODELS))

            # Save and display results
            filename = save_results_to_file(all_results)
            st.success(f"Results saved to {filename}")

            # Show comparison table
            comparison_data = []
            for model_name, results in all_results.items():
                avg_time = sum(
                    text_data["processing_time"] for text_data in results.values()
                ) / len(results)
                comparison_data.append(
                    {"Model": model_name, "Avg Processing Time": f"{avg_time:.3f}s"}
                )

            st.subheader("Model Comparison")
            st.table(pd.DataFrame(comparison_data))

        else:
            # Process with single selected model
            model = PIIMaskingModel(MODELS[selected_model])

            for text in texts:
                st.markdown("### Original Text", unsafe_allow_html=True)
                st.markdown(f'<div class="rtl">{text}</div>', unsafe_allow_html=True)

                (
                    masked_text,
                    processing_time,
                    colored_text,
                    tokens,
                    predicted_labels,
                    privacy_masks,
                ) = model.process_text(text)

                st.markdown("### Masked Text", unsafe_allow_html=True)
                st.markdown(
                    f'<div class="masked-text">{colored_text}</div>',
                    unsafe_allow_html=True,
                )

                st.markdown(f"Processing Time: {processing_time:.3f} seconds")

                if show_json:
                    st.json(
                        {
                            "original": text,
                            "masked": masked_text,
                            "processing_time": processing_time,
                            "tokens": tokens,
                            "token_classes": predicted_labels,
                            "privacy_mask": privacy_masks,
                            "span_labels": [
                                [m["start"], m["end"], m["label"]]
                                for m in privacy_masks
                            ],
                        }
                    )

                st.markdown("---")


if __name__ == "__main__":
    main()